INFORMATION TO USERS

The most advanced technology has been used to photograph and
reproduce this manuscript from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any
type of computer printer.

The quality ef this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms international
A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor. M1 48106-1346 USA
313/761-4700 800:521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Order Numhe>» 9108771

The impact of computer-aided software engineering on
programmer productivity and system quality

Granger, Mary J., Ph.D.

University of Cincinnati, 1990

Copyright ©1990 by Granger, Mary J. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THE IMPACT OF COMPUTER~-AIDED SOFTWARE ENGINEERING
ON
PROGRAMMER PRODUCTIVITY AND S8YSTEM QUALITY

A Dissertation submitted to the

Division of Graduate Studies and Research
of the University of Cincinnati

in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in the Department of
Quantitative Analysis/Information Systems
of the College of Business Administration

1990

by

Mary J. Granger

M.B.A., University of Cincirnati, 1980

Committee Chair: Dr. Roger Alan Pick

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UNIVERSITY OF CINCINNATI

July 19 19 90

I hereby recommend that the thesis prepared under

my supervision by Mary J. Granger
entitled _ ""The Impact of Computer-Aided Software

Engineering on Programmer Productivity and

System Quality"

be accepted as fulfilling this part of the requirements for
the degree of Doctor of Philosophy

Approved by 774 /é /

~

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright
Mary J. Granger

August 1990

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THE IMPACT OF COMPUTER-AIDED SOFTWARE ENGINEERING
ON

PROGRAMMER PRODUCTIVITY AND SOFTWARE QUALITY

Mary J. Granger

University of Cincinnati, 1990

The high cost of software production has forced
organizations to look for new environments to reduce the
time required for the development process. Currently, one
highly touted route toward improved programmer
productivity and increased system quality is Computer-
Aided Software Engineering (CASE): the

computer-based automation of system development tasks.

Software developers have automated almost every functional
area and level of the organization except their own. CASE
is an attempt to automate the production of software;
computers are being used to enhance the requirements and
analysis, design, coding, implementation and maintenance

phases of the software development life cycle.

-
(¥

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This research addresses two basic questions: when CASE
technologies are used to develop software 1) Is programmer

productivity improved? 2) Is system quality increased?

An experimental study with a control group (non-CASE) and
a treatment group (CASE) was designed to investigate the
effects of CASE usage. The same task, Pascal pretty
printer, was developed by both groups. Both the
developmental processes and the final projects were

studied.

This research makes three contributions to the study of
software development. First, to our knowledge, it is the
first controlled experiment investigating CASE tools.
Second, several metrics were identified that can be used

to identify and evaluate programmer productivity.

The third contribution of this research is the
quantitative measures to the claims of increased
programmer productivity and system quality being made by
CASE vendors and others. 1In this study, programmer
productivity increased when CASE technologies were used to

design a software system. Also in this study, the quality

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the systems improved; more complete systems were
developed by the teams that used CASE technologies for

system design.

Information technology managers should be encouraged in
their quest for increased programmer productivity. A
major component of the software crisis is the inability to
measure, estimate, and improve programmer productivity.
This study indicates that use of CASE tools would improve

prograumer productivity.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I thank the members of my committee: Dr. David R.
Anderson, Dr. John M. McKinney, Dr. Samuel Mantel and Dr.
Daniel D. Wheeler for their valuable comments and
suggestions.

A very special thanks to my chairperson, Dr. Roger Alan
Pick, for all his comments, suggestions, time, effort,
interest and patience with this dissertation.

I thank Roger Stuebing for his invaluable help with the
statistical analysis. Additional thanks to all my
students, especially Roger Anderson, Robert Alfieri,
William Glenn Campbell, James Horrell, Timothy Adams,
Rahul Bawa and Scott Drew. I appreciate the moral
support from fellow graduate students; Rob Rokey, Zaman
Matharsha, Fred Besco, Adam Fadlalla, Jiang Jiunn-Yih
(J.J.) and Marge Sklar. I thank Dr. John M. McKinney for
the initial encouragement and support to begin the
doctoral degree.

Thanks to my children, Mary and James, who are glad the
perpetual student is finished (for now), for their moral

support and encouragement.

Finally special thanks to my husband, Jim Granger, for
his editing, love and encouragement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

LIST OF APPENDICES

LIST OF TABLES

LIST OF FIGURES

CHAPTER I
INTRODUCTION

CHAPTER 2
LITERATURE-REVIEW

CHAPTER 3
METHODS

CHAPTER 4
MODEL

CHAPTER 5
DATA ANALYSIS

CHAPTER 6
CONCLUSION

BIBLIOGRAPHY

TABLE OF CONTENTS

ii
vii
viii

ix

40

83

101

123

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

LIST OF APPENDICES

PRETTY PRINTER SPECIFICATIONS

SIX ASSUMPTIONS
MODIFICATIONS TO PRETTY PRINTER SPECIFICATIONS

INITIAL QUESTIONNAIRE
USED TO DETERMINE LEVEL OF EXPERIENCE,
DEMOGRAPHICS, GPAS AND TEAM MEMBER PREFERENCES

COURSE SYLLABUS AND GRADING POLICY
REQUIREMENTS FOR PROGRAMMERS MANUAL, USERS
MANUAL AND PROGRAMMERS LOGS

PROGRAMS USED TO TEST THE PRETTY PRINTER

SPSSX DISCRIMINANT ANALYSIS CODE AND RELEVANT
RESULTS - ALL TEAMS FOR BOTH GROUPS - ALL
VARIABLES

SPSSX DISCRIMINANT ANALYSIS CODE AND RELEVANT
RESULTS ~ WITHOUT TEAM 3 FROM THE TREATMENT
GROUP (GROUP 2) -~ ALL VARIABLES

SPSSX DISCRIMINANT ANALYSIS CODE AND RELEVANT
RESULTS -~ ALL TEAMS FOR BOTH GROUPS - ALL
VARIABLES - TRANSFORMED TO Z SCORES - COMBINED
TO COMPUTE P VALUES FOR COMPLEXITY, SIZE AND
TIME

SPSSX - RELIABILITY - ALPHA MODEL - GROUP 1
CONTROL GROUP

SPSSX -~ RELIABILITY - ALPHA MODEL - GROUP 2
TREATMENT GROUP

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Title

SIGNIFICANCE VALUES AND T SCORES FOR
GROUP CHARACTERISTICS

CONSISTENCY MEASURES (CRONBACH’S ALPHA)
ALL SUBJECTS

TIME VARIABLE NAMES
COLLECTED FROM STUDENT LOGS

TIME VARIABLE NAMES
COLLECTED AUTOMATICALLY

VALUES COUNTED DIRECTLY FROM THE FINAL
SYSTEM

VARIABLES USED TO DEFINE THE TIME
CATEGORY

VARIABLES USED TO DEFINE THE SIZE
CATEGORY

VARIABLES USED TO DEFINE THE COMPLEXITY
CATEGORY

LEVEL OF SIGNIFICANCE (P VALUES)
AND MEANS -~ TIME VARIABLES (ALL TEAMS)

LEVEL OF SIGNIFICANCE (P VALUES)
AND MEANS - NUMBER OF LINKS AND RUNS
WITHOUT TEAM 3 (TREATMENT GROUP)

LEVEL OF SIGNIFICANCE (P VALUES)
AND MEANS - COMPLEXITY VARIABLES
(ALL TEAMS)

LEVEL OF SIGNIFICANCE (P VALUES)
SIZE VARIABLES (ALL TEAMS)

LEVEL OF SIGNIFICANCE (P VALUES)
VARTABLES COMBINED INTO CATEGORIES
(ALL TEAMS)

SIGNIFICANCE (P VALUES) FOR SYSTEM
COMPLETENESS

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55
65
67
76
87
93
96

107

109

111

113

114

117

LIST OF FIGURES

FIGURE Title
4.1 BELIEF 1 AND SUPPORTING HYPOTHESES
4.2 BELIEF 2 AND SUPPORTING HYPOTHESES
5.1 LEVEL OF COMPLETENESS
5.2 PERCENTAGE OF COMPLETENESS
5.3 TIME BY COMPLETENESS

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

116

117

120

CHAPTER 1

INTRODUCTION

BACKGROUND

The high cost of software production has forced
organizations to look for new environments to reduce the
time required for the development process. Currently, one
highly touted route toward improved programmer
productivity and increased system gqguality is Computer-
Aided Software Engineering (CASE): the

computer-based automation of system development tasks.

Software developers have automated almost every level of
the organization except their own. CASE is an attempt to
automate the production of software; computers are being
used to enhance the requirements and analysis, design,
coding, implementation and maintenance phases of the

software development life cycle.

Much has been written about the virtues of CASE

technologies. Many information systems managers realize

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that they need help, but do not know if CASE is a solution
to their software development problems. Is CASE worth the
time and financial investments necessary? Are there real
benefits in terms of programmer productivity and system
quality for those software developers who use CASE? Will
CASE prove to be a significant advantage for the
organization that competes in a rapidly changing global

environment?

There is an absence of studies that quantitatively
evaluate the influence of CASE technologies on programmer

productivity or system quality.

CONTENT

This research addresses two basic questions: when CASE
technologies are used to develop software 1) Is programmer

productivity improved? 2) Is system quality increased?

An experimental study with a control group (non-CASE) and
a treatment group (CASE) was designed to investigate the
effects of CASE usage. Both the developmental processes

and the final projects were studied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programmer productivity was measured using the differences
in the amount of time required to code the same system.
System quality was measured using the differences in the
complexity and the levels of completeness of the final
systems. The control group designed the system without
CASE technologies and the treatment group designed the

system with CASE technologies.

This dissertation presents the details of the experiment,
the analysis of the data, the results and conclusions of
the analysis. Chapter 2 contains an overview of the
present literature on CASE, the software crisis, the
software development life cycle and structured development
techniques (structured requirements and analysis,
structured design and structured programming). Chapter 3
presents the details of the experiment, including
descriptions of the subjects, the task, the control and
the treatment. The fourth chapter states the model that
is used for the statistical analysis, including the
definitions of the software metrics used to evaluate the
final system. Chapter 5 presents the statistical analysis
of the data and the results of the analysis. The final
chapter summarizes the research, presents the conclusions,
suggests ways in which this research can be useful to

practitioners and lists future research questions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

LITERATURE REVIEW

Computer-Aided Software Engineering (CASE) technologies
automate the software development process. This chapter
begins with an introduction of CASE and then presents
overviews of the software crisis, the software development
life cycle, and software development methodologies. CASE
technologies and the goals and objectives of CASE
fechnologies are discussed. Since Excelerator was the
CASE tool used in this research, this specific CASE
product and its capabilities are reviewed. Finally, there
is a review of both the research and practitioner
literature on CASE technologies. Halstead’s Software

Science and related metrics are discussed in Chapter 3.

INTRODUCTION

CASE technologies provide support for one or more software
development methodologies. Arthur (1983 pp. 4-5) defines
methodology as the "how" of system development and

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

technology as the "tool kit" used to implement the
methodology. Software engineering methodologies (Turner
1984), project management capabilities (Levine 1989),
prototyping (Boar 1985) and simulation (Pritsker 1984) are
several of the software development methods supported by
CASE technologies. Most CASE tools originally evolved
from, and continue to support and refine (Messenheimer,
1988), such techniques as structured analysis (DeMarco
1979), structured design methodologies (Yourdon 1979) and
data modeling methodologies (Warnier 1981, Chen, P. 1976),
which in turn evolved from structured programming (Linger
1979 p.7). Structured techniques apply engineering
discipline to system building and make substantial
improvements in the design and programming of systemns
(Martin,J. 1988 p.8). System design is an iterative
process that necessitates change and modifications in the
documentation used when applying structured techniques.
Often the initial design will be suboptimal; but the
systems analyst will avoid making design enhancements in
order to escape the tedious, manual documentation
modifications (Misra, 1988). By automating the structured
methods, CASE proposes to be more efficient than manual
methods; there is a reduction in the number of iterations
during the design phase and necessary revisions are less
difficult to implement. Consideration of alternative

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

designs for the same problem is also more feasible (Necco
1989). Structured methods help analysts master the
complexity of problems and are the basis for problem
solving with or without the computer. Many authors
contend that in order to be effective, CASE must have a
foundation in structured methods (Martin, C. 1988a:;

Wallace 1988; Hausen 1981).

SOFTWARE CRISIS

Information systems support new product development,
production, managerial decisions and enable the
organization to be more competitive. Investment in
information systems software development and maintenance
can be a major corporate expense. Productivity
improvements of software development have been exceeded by
improvements in hardware performance. Because general
solutions do not exist, the real problems reside in
producing custom-built, application-specific, organization-~
specific software. There has been an increased demand for
larger and more complex application software systems. The
term "software crisis" describes the current state of
software developnment: systems that do not meet the
client’s specifications, systems that are over budget,

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systems that are late, systems that are extremely complex
and systems that are difficult to maintain. The software
crisis involves deficiencies in software quality,
programmer productivity, lead time and software
development cost. Programmer productivity has only
(compared to the rest of the computer industry) been
growing at a rate of 5% per year. The last major
breakthrough in programmer productivity was in the 1950s
with the introduction of language compilers (Frenkel
1985). Shemer (1987) cites the following estimates of the
extent of the software crisis:
1. There is an estimated backlog of information
systems development of four years, with a hidden
backlog (those that are not even requested) of eight
years. One to 2.4 million software professionals
will be needed in the 1990s compared with 250,000 in
1982 (Martin 1982).
2. The relative cost of the software component of a
system is increasing at the same rate that the
relative cost of the hardware component is decreasing
(90% in the 1950s to 10% in the 1990s) (Schindler
1981; Wasserman 1982).
3. Maintenance costs outweigh development costs two

to four times (Lientz 1980; Ramamoorthy 1984).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Forty-five percent of maintenance problems are
detected after the system is delivered (Martin 1982)
and the relative cost of fixing these problems is 50-
100 times greater than if the problems were uncovered
during the analysis phase (Bbehm 1973).
Although recent research puts point 2 in doubt (Frank
1988; Gurbaxani 1987), the fact remains that the crisis is
persuasive in the software industry. Systems currently
being developed are larger and more complex than

previously developed software.

Following the software development life cycle phases and
embracing software development methodologies are attempts
to alleviate the software crisis. Most recently,
advocates of CASE technologies believe that their tools

are an even better solution to the software crisis.

SOFTWARE LIFE CYCLE

The software life cycle formally defines the phases in a
system development process. It provides a general
framework around which to build the system. The life
cycle defines a series of top-down development activities
for iteratively developing software systems and often

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consists of the five basic phases: requirements analysis,
design, coding/implementation, testing, and maintenance.
The phases are separate, but linked: a phase relies on the
previous phase for inputs and in return sends feedback to
the previous phase for verification (Smith 1987, p. 21).
During the requirements analysis phase the functions and
the data requirements necessary to solve the problem are
specified and documented. Page-Jones (1988 p. 2) defines
design as a "bridge between the analysis of the problem
and the implementation to the solution to that problem."
The design phase defines and documents ‘how’ the problem
will be solved during the coding/implementation phase.

The coding/implementation phase transforms the design into
computer code and also involves debugging. Before the
software product is delivered, it is tested to insure that
it satisfies the specifications established during the
requirements analysis phase. Maintenance activities
include modifications, enhancements and further removal of

errors.

Each phase consists of well-defined, systematic, step-by-
step procedures, but one phase need not be completed
before the next phase begins. At every phase, there
should be a verification of the requirements. The process

of building the system requires checking with and feedback

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the previous activities and phases. Therefore, the
life cycle should not be viewed as a set of rigidly
defined activities, but as a set of guidelines for systems
development that can be used to derive procedures
appropriate for a particular project. There may be many

variations on the five phases listed above.

Lack of user/client involvement until the final stages,
output specifications required during the requirements
analysis phase, and communication difficulties are some of
the problems mentioned during discussions of the systen
development life cycle (Mahmood 1987). Adherence to the
life cycle model can also be time consuming, costly and
complex. Other models for systems development include,
but are not limited to, prototyping (Boehm 1984a; Necco
1987) and information centers (Necco 1987), but the life
cycle model is currently the most widely used (Mahmood
1987) and is often implemented in conjunction with other

development methodologies.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOFTWARE DEVELOPMENT METHODOLOGIES

Structured development methodologies facilitate the system
development life cycle. "The methodologies are 80%

alike. The major difference is the symbols they use or
that they emphasice one part of the software life cycle
over another." (Georges quoted by Messenheimer 1988, p.
31) The three methodologies that have impacted systems
development and productivity the most are structured
programming (Linger 1979 p.7), structured design (Yourdon

1979) and structured analysis (DeMarco 1979).

Structured programming is the writing of a computer
program in a standardized manner to decrease the debugging
and testing problems, increase documentation and
readability, and facilitate maintenance. The emphasis is
on writing clear, concise, more readable and less error-
prone code. In a narrow sense, structured programming
attacks programming complexity and poor programming
productivity with three basic programming constructs:
sequence, iteration and selection. 1In order to promote
straight-line programming, GOTOs are avoided and one
entrance, one exit modules are encouraged. This structure
is imposed upon previous ad hoc methods of programming to
control the complexity and make the code more

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

understandable and readable. Because many programmers
believe that programming is a creative activity, 7
structured programming was not immediately accepted, but
currently it is regarded as a better way to write computer

code than more unconstrained methods.

In order to deal with larger and more complex systenms,
Stevens (1974) and Yourdon (1979) began to formulate the
concept of structured design. Yourdon (1979 p. 8)
defines structured design as "the art of designing the
components of a system and the interrelationship between
those components in the best possible way." Structured
design looks at the problem at a different level than the
programming level (Martin 1988, p. 10). The major graphic
design tools for structured design are structure charts
and data flow diagrams. Structure charts emphasize the
procedural aspects of the system and data flow diagrams
concentrate on the flow of data through the systen.
Structure charts depict the system modules and the
interactions between them: a hierarchical order controls
the graphic representation of the system. A data flow
diagram shows the data that flows between the processes of
the system and the way those processes transform the

data. A data dictionary defines all the flows, processes,

data stores and data sources in the data flow diagram.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initially, structured analysis defined all the system
requirements in narrative form (Yourdon 1989b, p. 123).
Currently, structured analysis is a graphical method of
interfacing with the user/client. Use of both structure
charts and data flow diagrams in the requirements analysis
phase help define the system at a higher/corporate level.
Both structured analysis and structured design are
iterative processes. Manual implementation of these
techniques has limited the use and acceptance of
structured methods because they are tedious, repetitive
and very labor intensive (Chikofsky and Rubenstein 1988);
these negative aspects of structured methods often
outweigh any improvement gained (Chikofsky 1988; Wallace
1988). Because of this, rework is often avoided and
requirements and design documentation become incomplete

and inaccurate.

SOFTWARE ENGINEERING

Software Engineering is the application of engineering

principles to software development; work on software

organized. Fairley (1985) defines Software Engineering as
the systematic production and maintenance of software

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

products that are developed and modified on time and
within cost estimates. A software product is the data,
documentation, computers, procedures or programs and any
other pertinent entities required to solve a particular
problem. Initially, the formal methodologies of Software
Engineering (structured analysis, structured design and
structured programming) were applied to scientific or
technical software such as compilers and operating
systems; currently, they are also being used to develop
information systems and business application software
(Messenheimer, 1988; Norman, 1989%a). Application software
also has become too complex to develop without formal
me+hnde; improved methods and tools are needed.
Complexity has increased because the application systems
of today are larger, deal with more difficult tasks and
process more data. Software developers are busy
automating other aspects of information processing, but
often neglect to automate the development of software.
CASE (Computer-Aided Software Engineering) is the

automation of software development.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CASE TECHNOLOGIES

CASE is not another software engineering methodology. It
is a set of tools or an environment that supports software
engineering methodologies (Burkhard, 1939; Norman,
198%9a). CASE encompasses many products which support the
design and development of computer-based information
systems. These products include structured analysis and
design tools, such as graphics tools for drawing and
maintaining structure charts and data flow diagrams,
automated data dictionaries, interactive debugging aids,
programming support libraries, text editors, automated
verification systems, test data generators, code
generators, etc. (Boehm, 1981, p. 460; Burkhard, 1989).
They support totally or partially the system development

life cycle.

CASE (Computer-Aided Software Engineering) is perceived by
many software developers as the answer to their software
problems and the software crisis that has plagued the
computer industry (Chikofsky 1988; Martin C. 1988b; Nejmeh
1988). CASE usage is considered a major step toward total

automation of software development (McClure 1989, p. 4).

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CASE technologies define a new software development
environment to improve the way systems are built. The
automation of systems development removes some of the
drudgery of planning, analyzing, designing, programming
and documenting systems, and provides the power to produce

large complex application software systems quickly.

Computer-aided software engineering is defined
conceptually as the automation of software development
throughout the entire life cycle (McClure 1989 p. 5;
Mynatt 1989; Hausen 1981). By combining interactive
graphics and databases, current integrated CASE
technologies support development of the design and
analysis phases as well as the implementation and
maintenance phases of the software development process
(Ramanathan 1988; Martin, C. 1988b). an initial attempt
at computer-aided development, PSL/PSA (Teichroew, 1977),
automated the generation of documentation during the
requirements and analysis phase. Future CASE technologies
will help define corporate information needs, and phases
such as corporate strategy planning (Rochester 1989) or
organization and information system modeling (Chen, M.
1989) will be added. CASE combines techniques and tools

aimed at building and maintaining software systems of all

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

types - large and small, commercial and scientific, on-

line, real-time, and batch.

Stratland (1989) and Voelcher (1988) divide CASE into two
levels: upper CASE or front-end technologies which support
the analysis and design phases cof the life cycle and lower
CASE or back-end technologies for automated code
generation and project support (Stratland 1989; Voelcher,
1989). Most CASE tools today support either upper or
lower CASE but not both (Aranow 1988) and, therefore, are
not fully integrated. The second generation of CASE
technologies will be integrated and standardized (Yourdon
1988). CASE tools with an expert system component are
already on the market and eventually CASE tools may have
natural language capabilities. Then, in order for the
CASE tool to generate a data flow diagram, a list of data
flows and their processes may be all that is necessary
(Martin C. 1988b). Eliot(1986) sees the evolving
technologies as assisting but not replacing software
engineers; Wallace (1988) believes CASE tools will perform
the mechanical aspects of analysis and design, freeing

software engineers’ time for creativity (Wallace 1988).

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Objectives/goals of CASE technology

Two major objectives of CASE technology are improving the
productivity of programmers during system development and
improving the quality of the software system being
developed (Chikofsky 1989; McClure 1989 p.6). Bachman
(1988) proposes that CASE should also be instrumental in
systems’ maintenance, the most time consuming information

systems task.

Productivity refers eiﬁher to the amount of output from a
specified resource input or the amount of resource input
to produce a given output. This simple concept can be
difficult to define in an operational sense. Most
discussions about CASE technology do not attempt to
provide a definition of productivity; there is no
consensus among those who do attempt a definition. Often
increased productivity implies an increased number of
lines of code per time period; but fast coding is not
enough to make a productive programmer (Robinson 1988).
Humphrey (1988 p.77) claims that "productivity data is
generally meaningless unless explicitly defined" and that
the number of lines of code per period can vary by "100
times or more." Chikofsky (1989) believes lines of code
per period is such a weak indicator of productivity that

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

he suggests improving typing skills would improve
productivity. Productivity can be enhanced by reducing
the programming efforts and streamlining development
procedures (de la Torre 1988; Boehm, et al. 1984). Jones
(1986 pp.7-8) reminds us that higher-level languages use
fewer lines of code in order to accomplish the same task;
higher-level languages are easier to use and fewer source
lines of code per period are written; higher-level
languages define collections of machine instructions as a
single function or name (Jones 1986, pp. 48-49). Thus
productivity, when measured by lines of code per period,
would appear to decrease when higher level languages are
used. But the number of systems developed per period
would increase. Companies that adopt CASE technologies
often do not establish the current level of productivity
as a benchmark for measuring increased productivity. That
is, they do not have data on current productivity against
which to measure productivity using CASE. It is also not
economically feasible to run both methods in parallel
within a controlled commercial environment. "There are
lots of quotes for efficiency gains," said one CASE
vendor, "but few that are meaningful." (Voelcker 1988, p.
27). There is an absence of measurable data that can be

used to evaluate the productivity increases of CASE.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The second major objective of CASE technologies is
improved system quality. Quality implies a dependable
system and includes checks on ccmpleteness, consistency,
accuracy and redundancy (Chikofsky 1989; McClure 1989; de
la Torre 1988). The system should meet the users'’

needs. Card (1988, p. 82) suggests a two-part definition
of software quality: satisfying product requirements
effectively and system efficiency. Poor quality means
"errors and discrepancies with the requirements" and
efficiency implies a method of system production that
"minimizes development costs and rework while maximizing
maintainability." CASE usage should foster better project
control and enforcement of standards (Stratland 1989),
creating a system with increased quality. Inconsistencies
and omissions should be detected earlier in the life cycle
so that requests for change can be incorporated with less

effort (Misra 1988).

Software quality is difficult to quantify. Software
Science (Halstead 1977) was an initial attempt to measure
software quality. Halstead proposed measures of the
complexity levels of both the algorithm needed to solve
the problem and the computer program written to implement
the algorithm. Additional research on software metrics

(Gordon 1979a; Elshoff 1984) built on Halstead’s metrics.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There is, however, an absence of measurable data that can
be used and is used to evaluate the improvements in the
quality of systems developed with CASE. This study

attempts to generate such data.

EXCELERATOR

Excelerator, a product of the Index Technology
Corporation, was the first IBM PC based CASE product and
currently is the most widely used microcomputer CASE
tool. Mirsa (1988) compared Excelerator with two other
CASE products (Structured Architect Version 1.2 and
Design/I Version 3.50) and found that it had the most
integrated environment. It is an upper CASE tool,
supporting the analysis and design phases of the software
development life cycle and built around an integrated data
dictionary. All the information about the system is
maintained in one location and can be used by a number of

people working on developing the systemn.

Excelerator provides full capabilities for creating and
maintaining the following types of graphs (Whitten 1987):
data flow diagram (Yourdon and Gane/Sarson symbol
structure charts (Ygﬁﬁgén/cOnstantine)
structure diagrams (Michael Jackson)

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

entity-relationship data model (both Chen and
MEIRSE sets)

data model diagrams (Bachman techniques)

presentation graphics (a superset of ANSI system)
The structured methodologies supported by Excelerator are
listed after each type of graph. These graphs can be
exploded or expanded into different information levels and
the relationships among the elements in the graphs are
maintained and cross-referenced in the data dictionary.

There is extensive verification checking against the

structured methodology rules (Topper 1990; Mirsa 1988).

RECENT STUDIES

Very little research about the effectiveness of CASE
technology exists (Carey 1988, Norman 1989a). Although
recent studies (Acly 1988; de la Torre 1988) report
increased productivity and improved system quality, few
formal measurements exist. There is reason to suspect
that reports appearing in the popular literature may be
biased. Due to large financial and resource investments
in CASE technologies by their organizations, many of those
claiming success would be in uncomfortable positions if
they did not have favorable results. Other affirmative

reports (Martin 1988a; Chikofsky 1989) have come from the

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

developers of commercial products. Often, reported
productivity and quality increases are managers’
perceptions rather than based on objective data. There is
a need for an unbiased examination of CASE technologies,

and this study attempts such an evaluation.

The following studies from recent literature are from two
major sources: the research community and the practitioner
community. Studies written by and for the research
community are very systematic; those written for the
practitioner community are anecdotal and informal. The
only published empirical study in the research community
is one done by Ronald J. Norman and Jay F. Nunamaker, Jr.
and reported in the Communications of the ACM (September
1989), the Proceedings of the Ninth International
Conference on Information Systems and the Proceedings of
the Twenty-second Annual Hawaii International Conference
on Systems Sciences (1989). Loh and Nelson published
their empirical study in Datamation (July 1989). Reports
of success in implementing CASE technologies within
specific corporations are chronicled in practitioner
journals; Carma McClure in Byte (April 1989) and Jack B.

Rochester in IS Analvzer (October 1989).

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Norman and Nunamaker (1988, 1989a. 1989Db)

Norman and Nunamaker conducted a survey of Information
Systems analysts. Findings are reported in Nerman and

Nunamaker (1988, 198%9a. 1989b)

Ninety-nine users of the Excelerator CASE tool volunteered
to participate in the survey. The subjects were from a
representative cross-section {over a dozen standard
industry codes) of 47 various size companies in the United
States and Canada and had 56 different titles. Ninety-one
respondents finished the guestionnaire. Seventy-nine
percent of the respondents reported that they had been
working with Excelerator 18 months or less. Each company
that participated was sent at least one diskette that
contained the questions for the survey and software to
administer it. Included with the questions on CASE were
questions on demographic information and on-line ’‘help’
with software definitions. After completion of the survey
the diskettes were mailed back to the researchers. The
respondents answered 136 paired comparison questions
consisting of 15 different CASE functions and 2 additional

behavioral functions.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The behavioral functions were:
Project member’s communication via [CASE product])
Project standardization

The CASE functions were:

Analysis - Graph Analysis

Analysis - Entity List

Analysis - Report Writer

[CASE product] works on both PC and mainframe

Data Dictionary

Data Flow Diagrams (Gane & Sarson, Yourdon)

Entity/relationship data model (Chen or MERISE)

Import and/or Export Facility

LAN support

Logical Data Model diagram (IBM)

Presentation Graphics

Record Layout Generation

Screen/Report Design

Structure Charts (Constantine)

Structure Diagrams (Jackscn)
The two questions asked for each pair of functions are "Of
the following items which one most increases your
productivity over manrual methods:® and "Rate how similar
these items are in their effect on your productivity (1-7,
7 - very different)? Enter 1 to 7?" (Norman 1989b). The
data from the survey was evaluated from several different

aspects.

In both (1989a) and (1988), Norman addresses the question
of users’ perceptions of CASE tool functions’ productivity
compared to manual methods’ productivity. He used
multidimensional scaling to yield a dominance ranking for
the CASE functions and a cluster analysis for the
behavioral functions. The main focus of these two

articles (1988 and 1989a) was the perceived dominant

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

productivity functions of CASE tools. The main focus of
the article (1989b) was on the behavioral functions

associated with CASE tools.

Norman and Nunamaker (1989b) use the data from the survey
to pose three research questions:
1. Can I.S. professionals prioritize the component
parts of CASE products that contribute the most to
increasing their productivity over manual methods,
such that this prioritizing is not just a random
event?
2. Is there any agreement among I.S. professionals
regarding a prioritizing of the component parts of
CASE technologies?
3. Does CASE technology provide greater technological
improvement or behavioral improvement compared to
manual methods?
(Questions 1 and 2 are also discussed in the first two
articles.) 1In the third article they established the
hypotheses for the three questions and gave additional

detail about the statistical methods used.

Question 1 was analyzed with individual responses using
Kendall’s coefficient of consistence which is designed to
determine the consistency of an individual’s responses to
paired comparisons. The coefficient of consistence was
converted to a chi-square value; a significant chi-square
value indicated that the responses cannot be attributed to
chance. Respondents were able to prioritize the CASE

functions that lead to perceived increased productivity.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Question 2 was analyzed using Kendall’s coefficient of
agreement, which was employed to evaluate the amount, if
any, of agreement among the respondents. The coefficient
of agreement was converted to a chi-square value; a
significant chi-square value indicated that there was
agreement among the respondents. There is agreement
regarding prioritization of CASE product component parts

with respect to perceived improved productivity.

The third research question compared two behavioral
funictions to the perceived technological improvements of
CASE usage. The first behavioral function was adherence
to organizational standards and the second was increased
communications. The two behavioral functions were used to
determine whether or not either one has an impact on
productivity in comparison to technological CASE
functions. Each behavioral function was compared to all
of the other 16 components collectively. Then, each
behavioral function was evaluated against each of the
other functions on an individual basis. Neither of the

null hypotheses were rejected for each CASE functions.

Norman and Nunamaker conclude (research questions 1 and 2)
that there is consistency within the individuals’

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

responses to the paired comparisons and also there is
agreement among the respondents about perceived
productivity of the CASE functions and the behavioral

functiovs.,

The overall conclusion (research question 3) was that the
respondents perceived an increase in technical
productivity rather than in the behavioral functions. The
respondents perceived an adherence to standards to
contribute more to productivity than other CASE

functions. Communication was perceived to contribute less
to productivity than other CASE functions. The one-to-one
comparisons produced mixed results: some of the CASE
functions were perceived to contribute more to
productivity than the adherence to standards and some were
contributing more to the adherence of standards. The
results were the same for the communication function, but
fewer functions were considered stronger and more
considered weaker. For both behavioral functions, there
were some CASE functions that showed significant

differences.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Standards adherence was stronger than:
1. Structure Diagrams
2. Record Layout Generation
3. Analysis -> Entity List
4. Lan support
5. Import and/or Export facility
6. Communication
7. CASE product works on both the PC and mainframe

Standards adherence was weaker than:
1. Data Flow Diagrams
2. Data Dictionary

Communication was stronger than:
1. LAN support for the CASE product
2. CASE product works on both the PC and mainframe

Communication was weaker than:
1. Data Flow Diagram
2. Entity/Relationship data model
3. Presentation Graphics
4, Data Dictionary
5. Screen/Report Design
6. Project standardization
7. Analysis -> Report Writer

Norman and Nunamaker appear to have a good cross section
of different organizations and I.S. professionals. An
unanswered question is whether the responses to the
questions identified with the respondents or companies
after the data is collected. There is no mention of
confidentiality in any of the three studies. It is also
possible that the respondents would report a productivity
increase with CASE tools because they might have been

instrumental in obtaining the funds or authorization for

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their acquisition. I.S. personnel would look relatively
foolish if they just spent $10,000 (approximate cost of
Excelerator) to buy software that did not increase their
productivity. A major contribution of the study is a
ranking (by I.S. professionals using Excelerator) of CASE
tool component parts that increase productivity over
manual methods; there was agreement on those component
parts that are perceived to contribute to increased
productivity. These professionals also perceive that they
receive more technological rather than behavioral
improvement when CASE tools are used. There are no
figures, nor did Norman try to collect them, for the
amount of productivity that is gained by using CASE tools

instead of manual implementation.

Loh and Nelson (1989)

Loh and Nelson (1989) conducted a survey of 40
programmers, analysts and systems designers from 12
different organizations. Twenty-six different CASE tools
were used by the respondents, with most of the
organizations having more than one CASE tool available.
There is no information about the types of companies, the
locations of the companies, nor the departments where the
CASE tools were being used. This lack of detail raises

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

questions about the representation of different types of
organizations and the type of software being written
(application software versus system software).
Additionally, there is no mention of the form of survey
nor how it was administered. Based on the ratings
reported, the assumption is made that there were some

scaling measures.

The major finding of the research was that productivity
gains vary depending upon the CASE tool and programmer
acceptance. Other findings include:

CASE usage often requires changing methodologies.

Training is not trivial.

Emphasis is shifted from the coding phase (lower end)
of the life cycle to the requirements and design
phases (front end).

CASE effectiveness is selective and is affected by:
programmer proficiency
system size

integration of CASE tools

One of the more interesting findings is that CASE tools
are more effective on small, simple projects than on large
(longer than 2 years), complex projects. This finding was
mentioned under the section discussing CASE failures and

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

was attributed to a lack of integration of CASE tools and

a lack of data sharing.

All the respondents used CASE for the requirements and
analysis phases of the system development life cycle, but
only 50% used CASE for the coding and maintenance phases.
Twenty-five percent of the respondents said they used CASE

throughout the entire life cycle.

Some of the reasons that CASE tools were not used or not
adopted include:

difficulty in sharing data

lack of integrated/compatible tools

a long learning curve

lack of user involvement in tool selection

lack of management support

poor training

This research claims that there are productivity gains
with CASE usage. This statement is based on the results
of the survey, however, there are no figures to support
this claim. The respondents report that they are more
productive, but do not report any measurements or
benchmarks of productivity. They also claim that when
CASE is used, more time is spent in the requirements and

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analysis phase and less in the coding; the time spent
during the front end of the life cycle has risen from 44%
to 55%. It would have been useful if Loh and Nelson had
specified where and how these measures were derived.
There are no gqualitative measures to support the

productivity claims.

McClure (1989)

McClure (1989) briefly chronicled the experiences of three
'companies, Touche-Rcss, Deere & Co. and DuPont as examples
of successful implementation of CASE technology. Each
example was a concise description of the type of CASE tool
the company used and the type of application that was

being implemented with the tool.

Touche-Ross adopted a variety of CASE tools, including
Excelerator, Information Engineering Facility (IEF), POSE,
Visible Analyst and DesignAid, for creating the
requirements specification for custom-built information
systems. Managers at Touche-Ross are strong believers in
learning the methodology before the CASE tool could be
used effectively. They believed that they produced high-

quality software that is easier to maintain, with CASE

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tools that assisted in systems planning, requirements

analysis, system design and code generation.

Managers at Deere & Co. believed that automation of the
software process lead to both increased productivity and
quality and reduced maintenance. They were using
Information Engineering Workbench, IEW and APS, which
generates COBOL code. They initially began using CASE
tools as a way to manage their data and felt that it is
better to have the data stored, in addition to being in
their analysts’ heads, in a repository. Deere & Co.
believed that their productivity has increased, but they

did not have any pre-CASE figures to use for comparison.

DuPont reported productivity gains that range from 3 to 1
to 6 to 1, with savings reaching $2 million and
maintenance costs sometimes decreasing by 75 percent.

They used CASE tools for custom-built software for both
internal and external clients and felt that if the end-
user is not involved, the project is a good candidate for
failure. CASE tools enabled DuPont to involve the end
user earlier in the systems development cycle. DuPont had
their own CASE tool, RIPP, which is a prototyping approach

to systems development.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All three of the above companies reported ‘productivity’
gains and savings during development and maintenance.
DuPont did give some dollar figures or percentages of
saving, but no indication where or how these numbers were
developed. It would have been useful if McClure had
specified where and how DuPont derived the numbers, 3 to 1
and 6 to 1, for productivity increases. 1In all three
examples, the companies were excited about using CASE
products for their system development, but they did not
give any specific examples of previous versus current
project development times, quality measures or maintenance

requirements.

Rochester, 1989

Rochester, in the I/S Analyzer, developed the theme of
"Building More Flexible Systems" with examples from DuPont

Cable Management Services and Scott Paper Company.

DuPont Cable Management Services needed a flexible system
in order to keep track of new kinds of equipment and to be
able to sell the service to other companies. They
employed DuPont Information Engineering Associates (also
chronicled by McClure (1989)) which was a user of an in-
house CASE prototyping tool, RIPP. DuPont developed the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cable management system within nine months; the expected
development time, as reported by other telecommunications
executives, for other similar systems was between two and
three years. DuPont had been able to add additional
capabilities to the system and also to sell the system to
other companies; therefore DuPont met its original

objective.

Scott Paper Company selected a single integrated CASE
tool, Integrated Engineering Facility (IEF), which
followed a specific methodology, rather than two
different, non-integrated CASE tools. IEF from Texas
Instruments had a total view of the organization and began
with a corporate strategic plan. The article then
described the seven phases used by IEF and Scott Paper in
order to develop the system. Developers at Scott Paper
did not have to use the CASE tool and CASE did not become
a standard way to develop systems. Scott Paper concluded
that:

1. Not all system development is appropriate for CASE

2. Not all projects need all seven steps

3. Since CASE is a new way of system development, it

may take three to five years to get CASE fully

accepted

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. CASE is not just a development tool; it is also a

strategic tool for the whole corporation.

If the estimates from other telecommunications executives
are accurate, the DuPont system appeared to have
significantly improved productivity. Nothing was said
directly about the quality of the system that was finally
developed but since DuPont was been able to modify the
system easily and also to sell it to other companies, it
was implied that the system was of high quality. Some
data that would be helpful for the productivity
comparisohs include the sizes of the other companies, the
ranks of the other executives, the sizes of their
development teams and use or non-use of CASE tools. Was
the reported productivity CASE tool specific? 1In the
Scott Paper synopsis, there was no mention of increased
productivity or quality. It was simply a report of the
way Scott Paper has begun integrating a CASE tool into
their systems development area. Similar to McClure’s
(1989) accounts of three different systems, these were
brief descriptions of two companies’ experience with CASE
tools. This article continued with more detail on CASE
tools and how they assisted in building more flexible

systems and in maintaining systems.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are several other practitioner articles about
specific companies adopting CASE technology, but they are
written along the same vein as the previous examples.
Admittedly, these are brief descriptions of the companies’
experience with CASE tools, but other articles in the
practitioner journals also appear to be lacking any hard
data. They are subjective, anecdotal and descriptive,
filled with managers’ perceptions and comments. There are
no quantitative productivity and quality measures to
support their claims. This is what future users of CASE
tend to believe when they begin to examine CASE

technologies for their organizations.

THIS RESEARCH

This research is more guantitative than any of the
previous studies on CASE. Benchmarks for both programmer
productivity and system quality without the use of CASE
technologies are established. The same system is
developed using CASE technologies and the data collected
is compared to the benchmarks. Statistical tests
determine whether there is an increase in either

programmer productivity or system quality. After a review

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the current literature, it appears that there is a need
for a more quantitative approach for evaluating the

effectiveness of CASE technologies.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

METHODS

THE. EMPIRICAL STUDY - USAGE OF CASE TECHNOLOGY

The purpose of this research is to evaluate the
effectiveness of the use of CASE tools during the design
phase of software system development. The phased or
waterfall model of the software development life cycle
consists of requirements analysis, design, implementation
or coding, testing and maintenance (Fairley 1985, p. 38;
Pressman 1982, p. 129). These phases overlap and are
often iterative. The primary activities during the design
phase are the identification of the software modules or
functions, data streams and data stores, and the
definition of their relationships and connections (Yourdon
1979, p. 7). Freeman (1983) considers the design phase
the central activity of the software development life
cycle but coding, testing, and maintenance concerns also
should be taken into account during the design of the

system (Freeman 1983).

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are a number of reasons for studying Excelerator
(Index 1987). The CASE tool currently available at the
College of Business Administration of the University of
Cincinnati is Excelerator. Excelerator was named Software
Product of the Year in 1987 by the American Federation of
Information Processing Societies (Hanna, 1990) and also
has been the most widely used CASE product (Fersko-Weiss,
1990). Excelerator is the selected CASE tool for this
research because of its emphasis on the design phase and
the support of structured methodologies. McClure (1989,
p. 158) introduces Excelerator as a "productivity tool
aimed at designing and documenting information systems and
real-time systems." .The concept of Excelerator, according
to the Excelerator User Guide (1987, p. 1i-1), is it
"provides all the capabilities you need to design and
document systems." Excelerator supports the popular
structured design methodologies of Yourdon (1979) and
DeMarco (1979) which are taught throughout the first two
years of the Information Systems curriculum and in the

Systems Analysis and Design course.

According to advocates of CASE technologies (Acly 1988,

Frenkel 1985, Gibson 1989, lLewis 1988), the final design
should take less time to develop, have fewer errors and

internally be more consistent than a design created

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

without the use of CASE technologies. Therefore, it may
be inferred that the system resulting from a design
developed with CASE tools also should have fewer
iterations in the design phase and be less complex than a
system developed from a design developed without CASE
tools. But these perceived benefits of CASE use may or
may not be real. The research question to be answered is,
"Are there significant measurable differences in either

the development process or in the final product?"

SCOPE OF THE EXPERIMENT

This research is a replicated project study with a control
group: its purpose is to study the effect of different
technologies, CASE versus non-CASE, when used to develop a
software system. "Replicated project studies examine
objective(s) across a set of teams and a single project."

(Basili 1986, p. 735).

This study is a controlled experiment using student
subjects implementing a classroom project. Controlled
experiments in an organizational environment are too
costly and time consuming (Myers, 1978). Real-world
projects will not be replicated by software developers

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because of financial and practical considerations; neither
the system nor the programming teams are the same. This
means it is often difficult to isolate and evaluate the
effect of the technology being studied (Boehm 1981; Glass
1982; Attewell 1984).

Due to variations in task complexity caused by product
differentiation, two commercial projects are rarely
comparable (Humphrey 1988; Eliot 1986; Haas 1989; Basili
1981). Because different systems are being built, it is
difficult to evaluate programmer productivity. This
research attempts to determine programmer productivity on
replications of the same system. One of the major
determinants of productivity is project size (Behrens
1983, Boehm 1984b). Iterations of the same project allows
this variable to be held constant. Additional
determinants of productivity are the computer system and
the programming language (Behrens 1983). 1In this research
these variables are also kept constant. Therefore, the
same task was given to a number of teams of university
students enrolled in two sections, across two quarters, of
an Information Systems course titled Software

Engineering.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Data collection is easier with student subjects:
practitioners are reluctant to change their way of doing
business (Card 1988). Students are a convenient sample
(Beath 1988) and since these students are Information
Systems majors, they are also a representative sample of
future users of CASE technologies. Haas (1989) used
university students as subjects to study measures of
problem size proposed by DeMarco (1982). Maintenance
tasks performed by students were used by Rombach (1987) in
a controlled experiment to evaluate the effect of software
structure on program maintainability. In order to
understand software development methodologies, Basili and
Reiter (1981) also used student programming teams. The
Cleanroom approach developed by IBM was evaluated using
university students (Selby 1987). Other project studies
that used university students as subjects include Gannon
(1977), Basili (1983), Boehm (1984a), Hall (1986), Knight
(1986) and Joyce (1987).

THHE COURSE

In this research, the two groups of subjects are students
in the same course, in different quarters, in a near lock-
step curriculum. Consequently, the subjects have similar

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

characteristics individually and teams were chosen to try
to insure team similarity. The same instructor conducted
both sections of the course in order to maintain
consistency for the presentation of the course material.
The experiment did not interfere with the quality of the
instruction given to the students. The main objective of
the course is to gain knowledge of structured
methodologies and to become familiar with "programming in
the large" by working in a programming team environment
and implementing a small (600-2,000 line) system.
Although 600-2,000 lines is not "programming in the
large," this is the size that is appropriate for the
limited amount of time in a ten wesk quarter. The
students used structured methodologies to implement and

complete a given project.

THE TASK

The experiment was conducted over the two quarters using
the same task. The project consisted of designing,
coding, testing, debugging and documenting a pretty
printer for Pascal programs. The project is of moderate
difficulty and length; it is a non-trivial problen,

resulting in an average of 1500-2000 lines of code.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A pretty printer is a computer program that reformats
computer programs (Cameron 1988; Oppen 1980; Rubin 1983).
The new reformatted version of a computer program should
be easier to understand and read. The original version of
the computer program is stored in a text file on a VAX
6350 under the VMS operating system and is treated as
input in the form of character strings. It is not the
purpose nor the responsibility of the pretty printer to
detect syntax errors. The pretty printer may assume that
the input is a text file containing a syntactically
correct Pascal Program. The output must also be a
syntactically correct program with the same execution

behavior as the input.

The pretty printer should add or modify appropriate line
breaks, spacings and indentations. If there are several
Pascal statements on a single line, that line should be
separated into several lines, with one statement per
line. If there is uneven indentation for a certain
construct, e.g., an IF THEN ELSE, the indentation should
be made consistent. Blank lines should be inserted
between sections and procedure and function declarations.

For a complete set of requirements see Appendix A.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The variable names and constant names should be
alphabetized within their respective sections. PROCEDURES
also should be alphabetized, but here there is a choice of
how that is to be accomplished; either rearrange the
PROCEDURE code into alphabetical order or create an index
of the PROCEDURE names. If PROCEDURES are physically
alphabetized, either the author of the original Pascal
program must have included FORWARD statements in the
program, or the pretty printer has to recognize that there
are no FORWARD statements and create them. The FORWARD
statements are needed because the PROCEDURE that is being
called must be physically ahead of any procedure or
function from which it is being called. If the PROCEDURES
are physically alphabetized, there is a strong possibility
that this rule will be violated. Use of the FORWARD
statement eliminates the need for this ordering and the
PROCEDURES can be arranged in any sequence. The second
method of alphabetizing involves creating an index of the
PROCEDURE names and their line numbers. PROCEDURE names
must be alphabetical in the index. The purpose of either

method is to facilitate a search for PROCEDURE code.

The final modified Pascal program is either stored in
another file, displayed on the screen or printed. Any
combination of the three options may be required by the

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

user of the pretty printer. The choice is determined by
the needs of the person who is submitting the Pascal
prograi to the pretty printer. For complete

specifications see Appendix A.

Identical detailed requirements prepared manually by the
instructor were given to the students at the beginning of
each quarter. The requirements were not prepared using
CASE technologies; use of CASE might provide an advantage
to CASE users and have a negative impact on non-CASE
users. All students had available the same computer
resources, the same programming implementation language,
the same debugging tools and were constrained by the 10-

week-quarter time period.

The task is broken down into two major phases: design and
implementation, with the emphasis on the design phase
(first five weeks). Students in the spring quarter did
not use CASE technologies while they learned structured
methodologies; those in the autumn quarter used CASE

technologies.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THE SUBJECTS

Participants in the study are junior level Information
Systems majors enrolled in the Software Engineering course
in the College of Business Administration, University of
Cincinnati. Most of the students majoring in Information
Systems will be the systems analysts of tomorrow;
therefore, the results are likely to generalize to the
entire population of professional systems analysts. All
students enrolled in the two sections participated. 1In
order to enroll in the course the students must have
completed all their freshmen and sophomore level
Information Systems courses: Introduction to Data
Processing, Principles of Structured Programming, COBOL I,
COBOL II, and Data and File Structures. The structured
programming concepts included in these previous
Information Systems courses are formalized and expanded
within the scope of a larger project in the Software

Engineering course.

Almost all of the students are familiar with the computer
system and the implementation language. Most previous
Informations Systems programming courses use the VMS
operating system and two of the prerequisite courses,

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction to Data Processing and Data and File
Structures, are Pascal-based courses. The students were
not familiar with a team concept of programming nor formal

structured software development methodologies.

During the 1989 spring quarter, the student teams
implemented a pretty printer using structured
methodologies, including top-down design and structured
programming methods (Yourdon 1979; Page-Jones 1988). They
did not use any of the integrated CASE technologies. All
of the teams decided, independent of class instruction, to
learn and use FLOW (Patton 1986) for their structure
charts and data flow diagrams. FLOW is a graphics word-
processor. All the checking and verifying within the data
dictionaries, structure charts and data flow diagrams were
done manually (without any computer aided integration).
These seven three-person teams are the control group or

benchmark for the experiment.

During the following autumn quarter, the same task was
implemented. Student teams received the same instruction
and used the same structured methodologies as in the 1989
spring quarter but also were required to use the available
integrated CASE technologies during the design phase. It
should be noted that the subjects in the autumn quarter

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were novices in CASE; novices are not always as successful

as seasoned users (Basili 1981).

Teams worked independently, with no collaboration among
teams, during all phases of project. There was a friendly
spirit of competition; each team was attempting to design
and code the best pretty printer. Students in the autumn
quarter were aware that they were working on the same
project as the students in the spring quarter; there might
have been some sharing of ideas, but the designs in the
autumn were different from those in the spring. Any
communication across quarters probably did not have a
significant impact on the autumn projects. Also, students
tend not to plagiarize on large scale projects. It has
been observed by the faculty that, while students may give
students in a following quarter a small, several hundred
line program, they are not willing to do the same with a
full-quarter project. Students were aware they were being
monitored, but did not know why or exactly what was being
observed. Measures were taken to insure privacy:; after
the data was collected and the grades for the quarter
assigned, the data was not associated with identifiable

individuals.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TEAM COMPOSITION

In a previous study using student teams, Rombach (1987)
ranked students on their educational performance (grades),
experience (industry) and relative programming talent. 1In
this study, educational performance and programming
talents were combined as a measure of the students’
programming ability and were used in conjunction with work
experience in determining team composition. Each team had
a "more experienced" member, a "less experienced" member
and an “"inexperienced" member. "More experienced" is
defined as either several quarters of co-op work
experience or more than a year of part-time work and
familiarity with several operating systems. "Less
experienced" students have one or two quarters of co-op
experience or less than one year of part-time work and
familiarity with one or two operating systems. The
students classified as "inexperienced" have little or no
practical work experience; most of their knowledge about
the field has been acquired from their courses.
Demographic data, age and sex, and information about the
level of experience was collected using a pretest
questionnaire (Appendix C) and the level of experience was
evaluated by the instructor, a graduate student and a

senior Information Systems major (grader). Data regarding

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

students’ ability was also gathered from several of the
students’ previous instructors and the grades (Basili
1981) earned in their prerequisite Information Systems
courses. As long as the teams maintained this mix of
experience and ability, some consideration was given to

students’ preferences in regard to team members.

In the spring quarter there were seven three-person teams
and in the autumn quarter there were three three-person
teams and one four-person team. The four person team had
one "more experienced" member, one "less experienced"
member and two "inexperienced" members. This team was
formed as a three-person team, but two students from
another team dropped the course and the remaining student
had to be placed on a team. This particular team was
selected because the students’ level of ability was
judged to be slightly lower than the other three teams.
The two groups were not different in course background,
work experience, age or grade point average (GPA). One
subject in the treatment group did not turn in a
questionnaire and the following levels of significance
(using t-tests) are calculated using the scores for 20
students in the treatment group and 13 students in the

control group.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The control group (non-CASE) consisted of twenty-one
students which formed seven three person teams. The
average age for the group was 23.05 years, with a range
from 21 through 29. The average GPA for Information
Systems courses was 3.44 out of 4.0 and the average GPA

for all courses was 3.13.

The treatment group (CASE) consisted of thirteen students
which formed four teams, three three-person teams and one
four-person team. The average age for the group was 22.92
years, with a range from 19 through 31. The average GPA
for Information Systems courses was 3.43 and the average
GPA for all courses was 2.91. The p values and t scores
for age, overall GPA and Information Systems GPA are shown

in Table 3.1.

TABLE 3.1
SIGNIFICANCE VALUES AND T SCORES FOR GROUP CHARACTERISTICS

(31 degrees of freedom)

VARIABLES T SCORES P_VAIUES

AGE 0.120 0.905

GPA (overall) 1.830 0.077

GPA (I.S. only) 0.048 0.962
54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using a two-tail test, none of the means were

significantly different at the 0.05 level.

All the data were transformed into z-~scores, that is, the
values for the team variables were normalized. Using the
SPSSX RELIABILITY procedure with the ALPHA model,
Cronbach’s alpha was calculated for each of the two groups
for the complexity, size and time categories. See Chapter
4 for additional information about the three categories.
Each group’s alpha values for each category are shown in
Table 3.2. The SPSSX code and relevant results are in

Appendix I for group 1 and Appendix J for group 2.

TABLE 3.2
CONSISTENCY MEASURES (CRONBACH’S ALPHA)

ALL SUBJECTS

CONTROL TREATMENT
GROUP GROUP
COMPLEXITY 0.8737 0.9277
SIZE 0.7921 0.9394
TIME 0.7180 0.7336

Any alpha value greater than .8 is a good indicator of
internal consistency. Internal consistency or less

. 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variance among the subjects in the same group is an
indicator that the subjects tended to perform in a similar
manner for the same variables. All the alpha values for
the treatment group were well above the .8 level; those
for the control group were above or close to the .8

level. However, the alpha values for the treatment group
were higher than those for the control group. This is an
indicator of more internal consistency and less variance
within groups, and although the treatment group appears to
have greater consistency than the control group, there is
little variance within either group. See Appendices H and

I for copies of SPSSX code and relevant output.

THE PROCESS

Students were given the specifications (Appendix A) for
the pretty printer during the first week of class. Those
in the treatment group (those that were required to use
Excelerator) were told that they should start learning how
to use that software. Those in the control group (without
Excelerator) were told that they could use any software
that was available; there were no restrictions. However,
Excelerator or other integrated CASE products were not

available. Class lectures for the first four weeks of the

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quarter covered structure charts, data flow diagrams, data
dictionaries, module specifications and interface

specifications.

Time for questions was allotted at the beginning of each
class period; there were two 75 minute class meetings per
week. The control group had so many ‘what if’ questions
that really should not have been of concern, that six
assumptions (Appendix B) about the input data were
generated, thus eliminating some of their trivial
questions. These assumptions were given to the
Excelerator group during the end of the second week of the
quarter. At that point, several of the same questions had
arisen; possibly additional questions were eliminated with

the distribution of these assumptions.

Design walkthroughs were conducted near the end of the
third week. This allowed ample time for major
modifications, gave everyone the chance to experience a
walkthrough, made sure that everyone was keeping up with
their work and enabled others to look at other designs.
These walkthroughs were not graded; it was a ‘free’ look
at designs. Classmates made positive suggestions, often
catching omissions and errors. Often there were comments
like, "Why didn’t we think of that," "We want to see that

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

finished project," or "We don’t like that approach," but
the walkthroughs were conducted in a very positive
atmosphere, perhaps because there was no grade attached.
The presentations were all very well done, with good use
of visual aids and handouts. It was almost as if each

team was trying to impress the others.

During the autumn quarter, Excelerator was installed on
four Zenith personal computers with a 808386 central
processing unit chip. For the autumn quarter, any
questions on Excelerator were answered in class. If the
instructor did not know the exact answer, usually someone
else in the class already had reached the same stage and
already had a solution. However, except for distributing
passwords and project designations, the only class time
spent on Excelerator was that time used to answer

students’ questions.

Designs were collected, graded and returned during the
fifth week. Included in the design package were the
structure charts, data flow diagrams, data dictionaries,
module specifications, interface specifications and a
brief verbal description of the team’s design with an
explanation of a pretty printer. 1In both instances,
designs were handed in on Tuesday and returned, with

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

comments and a grade, on Thursday. The CASE generated
data flow diagrams and structure charts were more complete
than the non-CASE; they were not missing any of the 24
specifications, were fully labeled and were not missing
inputs or outputs. Although the data dictionaries
generated by Excelerator contained definitions for all the
data and processes from the data flow diagrams, the format
was harder to understand than the manually generated data
dictionaries. Grades for both quarters ranged from 84 to

94.

The coding phase then began. Class lectures concentrated
on modularity, cohesion, coupling, fan-in, fan-out and
external procedures in Pascal on the VAX. All pretty
printer procedures were required to be external; no
procedure was allowed to have another procedure nested
within. There were two reasons for this restriction.
First, the students should be thinking of "programming in
the large" with other programmers using their code and
creating libraries of code that can be used for other
systems. Many of the procedures that are nested within
another procedure have the potential for use by other
routines and if nesting occurs, this sharing of code
cannot take place. Secondly, external procedures, without
any nested procedures, were the input for the Pascal

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

metrics program that was used for token counting;
procedures with nested procedures would cause erroneous

tabulation.

Students set up VMS command files to facilitate the
compiling and re-compiling, linking and running of their
external procedures. Command (COM) files are programs
written using VMS DCL statements that can perform any of
the commands that can be individually written at the VMS
"gw prompt. By combining all these commands into a file,
the file can be run and all the commands in the file are
then executed with just the one statement. Not all
students were familiar with command files and some class
time was spent, both quarters, reviewing the setup of
these files and their functions. The students also used
the COM files as an interface between the user and their
final pretty printer. These programs queried the user as
to the input file that was to be sent to the pretty
printer and the medium for the output: file, screen,

printer or any combination of the three outputs.

During the coding phase some teams’ members specialized.
Some teams divided the work for the project into coding
and documentation, while others had three divisions;
coding COM files, Pascal coding and documentation. Still

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other teams had all members working on all phases of the
implementation. This division of labor did not occur
during the design phase, but in recognition of some of the
members’ abilities, responsibilities during the coding
phase were often separated and distributed. All these
decisions were made by the teams themselves, without any

consultation with the instructor.

The project was was handed in during the tenth week of the
quarter. Required in this phase was the Pascal code, a
user’s manual, a programmer’s manual and any changes made
to the original design and an explanation as to why the

changes were necessary.

During exam week, the 11th week, the students worked on a
take home final and the testing of another team’s
project. They were allowed to work as a team or as
individuals, since some of the team members were
definitely tired of each other. Either way, they wrote
sample programs to test the pretty printer, and wrote a
few pages describing the accomplishments and shortcomings
of the project tested. They were toid to treat the
project that they had to test as a software package that
they just purchased. They were given copies of the users’
manual which should correspond to the documentation that

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accompanies purchased software. Part of the evaluation
consisted of critiquing the quality of the users’ manual.
Some of the best evaluations were those that compared the
Pascal program before and after the pretty printer; copies
of each version were turned in and the students marked
directly on the listings what the changes were. They
referred to the original specifications and listed
successes and failures. They enjoyed looking at other

students’ work and seeing the results.

DATA COLLECTION

The question of "what to measure" always arises. Yourdon
(1989a) emphasizes that measuring the "process" used in
developing the product is just as important as measuring
the "product." In order to determine the effect of the
use of CASE technology during the design phase of the
software development life cycle, aspects of both process
and product were measured. Data was collected both
manually and automatically during the process and on the

developed system (Card 1987).

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DATA COLLECTION - THE PROCESS

The process was evaluated using the data collected during
the design phase and information collected automatically

during the implementation phase.

I felt that some part of the students’ final grades should
depend upon their progress reports and personal logs,
otherwise the students would be unlikely to keep track of
their activities nor turn in any reports of those
activities. Data involving the design phase was collected
using weekly progress reports, minutes of team meetings
and personal logs. The progress reports and the minutes
were turned in weekly; the logs at the end of the

quarter. Evaluation was based on completeness, not
correctness; correctness would be very difficult to
determine. The students were told that their logs were
supposed to contain a record of all the activities
associated with the Software Engineering course and the
amount of time spent on each activity. This information
should have been recorded daily or whenever the students
work on the course. Also included in the logs should have

been copies of progress reports and the team minutes.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There was no precise format recommended for the progress
reports, minutes or logs and an exact format would have
been helpful to both the students and myself. The
students work better with formal guidelines and a precise
format would have facilitated tallying the data in the
logs. Logs were also to include any decisions that were
made about the design. Students were told that their logs
should be so complete that if someone would replace them
on the project, their logs would serve as an introduction
and a clarification of the work already in process and

explain both how and why things were being done.

In order to prevent the logs being done at the end of the
quarter and therefore not being an accurate picture of the
individual processes, they were date stamped every week.
Requirements for the logs are included in Appendix D.
Table 3.3 lists and defines the variable names that were
assigned to the data accumulated from the student logs.
This data was accumulated by a senior in Information
Systems who examined students’ logs and tallied their
reported individual times and team times spent for each

phase of the project.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NAME

INDDES

INDCOD

GRPDES

GRPCOD

ABLE 3.3
TIME VARIABLE NAMES

COLLECTED FROM STUDENT LOGS

DESCRIPTION/DEFINITION

The amount of time an individual
reported that he/she working by
his/herself spent on the design
phase of the project.

The amount of time an individual
reported that he/she working by
his/herself spent on the
coding/implementation phase of the
project.

The amount of time an individual
spent with his/her team working
on the design phase of the
project. This time is from the
team’s minutes for its meetings.

The amount of time an individual
spent with his/her team working on
the coding/implementation phase of
the project. This time is from
the team’s minutes for its

meetings.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 3.3 (continued)
TIME VARIABLE NAMES

COLLECTED FROM STUDENT LOGS

TOTDES The total amount of reported time
that a team spent on the design
phase of the project. Sum of
GRPDES and INDDES for all the team
members

TOTCOD The total amount of reported time
that a team spent on the
coding/implementation phase of the
project. Sum of GRPCOD and INDCOD
for all the team members

TOTTME The total amount of reported time
that a team spent on the entire
project - design and
coding/implementation phases. Sum

of TOTDES and TOTCOD

Data from during the coding phase was automatically
collected. Each logon, compilation, link, run and logoff
was recorded. The total amount of time on the system, and
the counts for the compilations, links and runs are used
to determine whether use of CASE technology has reduced

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the number of iterations necessary to implement the
system. This data was collected for each individual

student and combined to form the team totals.

Several programs have been created that collect this data
without the students’ interaction. The students knew that
data about their project was being collected, but they did
not know how or why. Table 3.4 lists and defines the
variable names that were assigned to the data accumulated

from these progranms.

TABLE 3.4
TIME VARIABLE NAMES

COLLECTED AUTOMATICALLY

NAME DESCRIPTION FINITION

ICOMPL The number of compiles for an
individual student

GCOMPL The number of compiles for a team

ILINKS The number of links for an

individual student

GLINKS The number of links for a team
IRUNS The number of runs for an individual
student
67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GRUNS

ITIME

GTIME

ILOGON

GLOGON

TABLE 3.4 (continued)
TIME VARIABLE NAMES

COLLECTED AUTOMATICALLY

The number of runs for a team

The amount of time an individual
student spend logged onto the VMS
systen.

The amount of time a team spend
logged onto the VMS system

The number of times an individual
student logged onto the VMS system

The number of times a team logged

onto the VMS system

DATA COLLECTION - THE PRODUCT

The product was evaluated using several different programs

that collect data about the finished product and which

compute "software metrics" (Halstead 1977).

Most of the seminal research on software metrics has been

performed by Maurice Halstead (1972) and Thomas McCabe

(1976) (Curtis 1983); both Halstead’s and McCabe’s metrics

attempt to define and measure the complexity of a software

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

task. The software metrics used do not depend on any
specific type of development methodology (Grady 1987).
One of the major results of a study done by Basili, Selby
and Hutchens (1986) was that metrics could differentiate
between systems developed using different methodologies.
It has been shown that metrics can also differentiate
between systems developed using different development
technologies; keeping the development methodologies
constant. In this instance, the comparison is between a
software system developed without CASE tech.ologies and

one developed using CASE technologies.

Some of the metrics of interest include, but are not
limited to, the number of executable lines, the number of
modules, the number of decisions, the number of tokens,
the average number of statements per module and program
data coupling. Gilb (1977 p.88) counts the number of IF
statements in order to measure the logical complexity of a

computer program.

The complexity of a program is of interest because it
affects the development time, the number of defects and
the ease of modification (Weyuker 1988). However, it is
not always easy to determine what to measure. As
previously stated, an improved design should reduce the

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complexity of the product. The number of lines of source
code is the most often used and most intuitive indicator
of complexity (Boehm 1987). There is often discrepancy
about the composition of the "lines of source code."
Blank lines, comments and declarations may or may not be
counted. Arthur (1983 p.133) defines lines of code as
those lines with "action verbs." Teams may adopt various
“comment" philosophies and this will affect both the
number of lines in a program and the amount of time spent
on the "machine." Commenting, as well as coding, involves
cognitive activity and should be part of the time spent

developing the system.

In this study, separate counts of actual "action" lines
and comment lines were taken. If the teams themselves do
not establish standards, there also may be variance within
teams as to the commenting philosophies of the team
members. As long as we are consistent in our definition
of "source code" and are comparing size within the same
language and for the same application, size does measure

complexity and productivity (Humphrey 1989, p. 317).
Other measures of complexity involve counting the number
of operators and operands in a program. Operands are

constants and variables (Halstead p. 5). Halstead defines

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operators as any symbols or combinations of symbols that
affect the value or ordering of an operand (Halstead p.
5): they may be function calls, mathematical symbols,
delimiters or keywords. Jones (1986, p. 108) suggests a
data complexity measure that uses the number of comparison
operators as a complexity indicator. The more decisions
that have to be made to solve the algorithm, the greater

the complexity of the algorithm.

Elshoff (1984) studied 20 candidate measures of program
complexity and located a set of four measures (using a
measurement system developed by Elshoff) that would define
program complexity and could be used to classify

programs. His four measures are length of the program,
number of unique operators, data difficulty and the number
of unique operands. Length is the sum of the number of
operators and the number of operands (Halstead 1977).

Data difficulty is defined as the total number of operands

divided by the number of unique operands.

Stevens, Constantine and Meyers (1974) studied the
structural complexity of programs. They define absolute
structural complexity as the number of modules in the
system and relative structvval complexity as the ratio of
the number of linkages to the number of modules. They

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

propose that fewer connections imply a less complex
system. Jones (1986, p. 108) uses the term "functional
complexity® to define the flow of control and the number

of linkages.

A less complex program is easier to understand and
maintain; a better design should produce a clearer
program. Halstead (1977, p.19) defines program volume as
the size of an algorithm expressed in bits or the count of
the number of mental comparisons required to write a
program (Halstead 1977, p. 47). If the same algorithm is
coded in a different language, the volume of the program
will change. Lower level languages will require more
operators and operands to program the same algorithm than

a higher level language.

Halstead (1977, p.9) defines program length as the sum of
the total number of operators (Nl) and total number of
operands (Nz). This measure is the actual implementation
length; how many operators and operands were used to
implement the algorithm. Program length, most often
calculated as the sum of the number of operators and the
number of operands, is considered a direct observation.
Actual program length is calculated as:

N=N1+N2

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Halstead intuitively used thermodynamics and information
theory to estimate program length as follows:

n, * logzn1 + n, * log2n2
where n, is the number of unique operators in the program
and n, is the number of unique operands. This estimated
program length assumes good program construction; a pure
or polished program was written to implement the algorithm
(Fitzsimmons 1978). If the program is well-written, the
observed program length should not differ greatly from the

estimated program length.

A measure of program clarity is proposed by Gordon
(1979a): the measure of program clarity is Halstead’s
program volume divided by Halstead’s estimated program
level in units of elementary mental discriminations; the
number of individual mental calculations needed to solve
or understand a problem. Program level is calculated as

follows:

(2 * n,)/(n, * N,)

Gordon (1979b) measures the amount of mental effort needed
to understand a program and supports his claim that effort
is a measure of clarity. The less mental effort the

clearer the program; the better constructed program

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requires less effort, therefore is clearer, than a poorly

constructed program.

Fitzsimmons and Love (1978) reviewed and evaluated
Halstead’s software science theories. They concluded that
"software science is a possible tool for answering"
questions about properties of software development

projects and the difficulties of programming.

In this study the following metrics were obtained using a
program that used the actual finished project procedures
as input character strings and counted the number of
unique tokens and the total number of occurrences for each
token. Counts were obtained for each module in a project;
these counts were then summed for total project count for
each metric for the team project. This was done for each
of the eleven projects, not for each individual student.
The student teams handed in a single project and in most
cases the author of individual modules was not

identified. The major interest is in the completed pretty
printer. Table lists 3.5 the variable names that were
assigned to each of the counts and an explanation of each

of the counts.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The number of unique cperators (nl) was incremented by 1
each time a new token was encountered; for this metric the
same token is not counted more than once. The following
operators were counted: PROCEDURE, FUNCTION, REPEAT,
WHILE, UNTIL, FOR, BEGIN, END, CASE, IF, THEN, ELSE,
REWRITE, RESET, READ, READLN, WRITE, WRITELN, AND, OR,
NOT, WITH, DIV, MOD, all mathematical and Boolean symbols,
and all delimiters. The total number of operators (Nl)
used throughout the system is the sum of the frequency of
the unique operators (FEXTPR, FEXTFN, LOOPS, SELECT,
OPNOUT, OPNIN, READ, WRITE, LOGIC, MTHSYM, RCDS, SETS,

SYMBOLS) . ’

The number of unique operands (nz) is the sum of the
number of unique constants (CONST), the number of unique
variables (VARBL) and the number of unique literals
(LITERAL). The total number of operands (Nz) used
throughout the system is the sum of the frequency of the

unique operands (FCONST, FVARBL, FLITERAL).

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 3.5

VALUES COUNTED DIRECTLY FROM THE FINAL SYSTEM

NAME

CMMNTS

CONST

FCONST

VARBL

FVARBL

LITERAL

FLITERAL

DESCRIPTION/DEFINITION

Number of lines of code (excluding
comment lines and blank lines)

Number of lines of comments

Number of unique constants - from
the CONST section

Constant frequency - number of total
constants - from the CONST
section and usage throughout the
project.

Number of unique variables - from
the VAR section

Variable frequency - number of total
variables - from the VAR section
and usage throughout the project.

Number of unique literals used
throughout the project.

Literal frequency - number of total
literals used throughout the

project.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PRMTRS

FPRMTR

EXTPRC

FEXTPR

EXTFNT

FEXTFN

LOOPS

SELECT

TABLE 3.5 (continued)
VALUES COUNTED DIRECTLY FROM THE FINAL SYSTEM

Number of unique parameters - from
the heading of a PROCEDURE

Parameter frequency - number of
total parameters - from the
heading of a PROCEDURE and usage
throughout the procedure.

Number of external procedures
declared

Procedure frequency - number of
external procedures declared and
invoked

Number of external functions
declared

Function frequency - number of
external functions declared and
invoked

Loop frequency - number of REPEAT,
WHILE and FOR loops used

Selects frequency - number of CASE,
IF and ELSE statements used

THEN is part of the IF statement

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 3.5 (continued)

VALUES COUNTED DIRECTLY FROM THE FINAL SYSTEM

OPNOUT Total number of times files are
opened for output using the

REWRITE statement.

OPNIN Total number of times files are

opened for input using the RESET

statement

READ Total number of READ or READLN
statements

WRITE Total number of WRITE or WRITELN
statements

IOGIC Total number of AND, OR, NOT, >, <,

>=, <=, =, <> tokens used
throughout the project.

MTHSYM Total number of mathematics symbols
(+, *, -, /, DIV, MOD) used
throughout the project.

RCDS Total number of times a record field
is used - counting the WITH
statements and the ‘.’ for
qualifying the record field.

SETS Total number of times a set is used -

counting IN statements.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 3.5 (continued)
VALUES COUNTED DIRECTLY FROM THE FINAL SYSTEM

SYMBLS Total number of symbols (:, :=, ’/,’,

(*, *), [, 1, (.,),) used
throughout the project.

In this research the above measures are used to define
three areas of interest: complexity, size and time.
Complexity comprises of the number of lines of executable
code (LOC), Gordon’s clarity measure (CLARITY), Halstead’s
number of unique operands (“2) and number of unique

operators (n Elshoff’s level of data difficulty

)
(DATADIFF), the number of selection statements (SELECTS),
the number of iteration statements (LOOPS), the number of
blocks of code (BLOCKS),and the level of difficulty
(DIFFICULTY). Lines of executable code (LOC), the number
of lines of comments (CMMNTS),the number of modules
(MODULES) and Halstead’s volume (VOLUME), vocabulary
(VOCAB), implementation level (IMPLEVEL), estimated length
(ESTN) and program length (LENGTHN - sum of all
occurrences of operators and all occurrences of operands)
torm size. Time is a composite of the number of times a
team logged onto the system (GLOGON), the number of
compiles (GCOMPL), the number of links (GLINKS), the

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of runs (GRUNS), the amount of time spent on the
system (GTIME), the amount of reported time spent on
design (TOTDES), the amount of reported time spent on
coding (TOTCOD) and the total reported time spent during
the quarter (TOTTME). All the variables defining the time
category are team measures; they have been summed for the
students within the team. The number of lines of
executable code (LOC) are included in evaluating both
complexity and size. Intuitively, the complexity of a
system increases as the number of lines of executable code
increases. The number of lines of executable code is also

an indicator of the size of the system.

Defects in the final product can be evaluated according to
Yourdon’s (1989a) three-way breakdown of defects: defects
due to coding, design, and/or documentation. The number
of defects is a measure of the quality of the system.

Each system was tested for completeness, how well the
system met the initial requirements, using several
different Pascal programs as input data, each having
different types of syntax that need to be reformatted.

Copies of the test programs can be found in Appendix E.
Systems that did not handle all the required formatting

are considered incomplete. Incorrect attempts at

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

formatting are considered defects and further
investigation was made to determine whether the defect was
in the implementation or in the design. Defects were
attributed to logic errors, poor data definitions, poor

module interfaces and so forth (Humphrey 1989, p. 314).

A senior in Information Systems evaluated the projects for
completeness. He was given all eleven projects to
evaluate, but did not know which projects were developed
using CASE and which were developed without CASE. The
projects were shuffled and the seven without CASE were
randomly merged with the four that used CASE. The
instructor kept a key to the projects. The original
specifications were used to determine the completeness of
each project. On each of the different specification, a
"0 - 1 - 2" scale was used to record the completeness. A
score of 0 indicates that no attempt was made to
accomplish that specification. A score of ‘1’ indicates
that some attempt was made, but it was not a totally
successful attempt. A score of ‘2’ indicates a totally
successful attempt at a particular specification. Once
the scales were returned to the instructor, they were re-

connected with their appropriate team.

8l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Any inconsistencies in either the programmer’s manual or
the user’s manual are considered documentation defects.
These defects may be internal to the documentation itself,
or external, that is, conflicting with the actual coded
system. Since the senior Information Systems major was
using the manuals to understand and test the projects, he
also was in a position to evaluate their effectiveness.
This evaluation is in the form of comments about the
manuals’ effectiveness, clearness, appropriateness and

information content.

A system not only consists of the actual code, but also
the documentation that accompanies the code. If CASE is
effective, the system developed using CASE technologies
should have fewer defects, be more complete, have better
documentation and be of higher quality than the system
developed without CASE.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

RESEARCH MODEL

Two major objectives of CASE technology are "improving
the productivity" during system development and
"improving the quality" of the software system being
developed. (Chikofsky, 1989; McClure 1989 p.6). This
research used twenty-seven variables to test "increased
productivity" and "improved quality." The twenty-seven
variables were divided into four major categories:
completeness, complexity, size and time. The
completeness level is a single variable giving the number
of requirements met by each of the systems. A complete
system would have a completeness level of 48, twice the
number of requirements. There were eight variables in
the time category, eleven in the complexity category and
eight in the size category. Because lines of code (LOC)
is a measure of both the size of a program and the
complexity of a program, this variable was included in
both the complexity category and the size category. The

hypotheses were tested using the difference in the means

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for variables in the control group (non-CASE) and the

treatment group (CASE).

This chapter presents the model for this research.

First, the two major research questions are stated. Next
the formal hypotheses (A, B) that support each of the
questions is given. Each of the formal hypotheses (A, B)
is then operationalized by two sub-hypotheses (Al, A2,
Bl, B2). Finally the categories and variables that test

these hypotheses are described.

RESEARCH QUESTIONS
The following two questions are addressed in this study:

Belief 1: Use of CASE technologies increases the

productivity of the programmer.

Belief 2: Use of CASE technologies increases the quality

of the system/program being developed.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BELIEF ONE

The formal hypothesis that tests the first belief is:

(A)

Hy: There is no difference in the productivity of the
programmer who uses CASE technologies and the
productivity of the programmer who does not use CASE
technologies.

H,: Programmer productivity is greater when CASE
technologies are used than when CASE technologies are not

used.

This hypothesis is made operational with the following
hypotheses:

(A1)

H,: There is no difference in the amount of time required
to produce a system using CASE technologies and the
amount of time required to produce the same system
without using CASE technologies.

le The amount of time required to produce a system using
CASE technologies is less than the amount of time

required to produce the same system without using CASE

technologies.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(A2)

Hy: There is no difference in the completeness of the
system designed with CASE technologies and the system
designed without CASE technologies developed in the same
or less amount of time.

Hl: The level of completeness of the CASE produced system

is greater than the level of completeness of the non-CASE

produced system for the same or less amount of time.

The first operational hypothesis (Al) was tested using
the amount of time that the control group (non-CASE) and
the treatment group (CASE) used to code the pretty

printer.

Eight variables were used to define time. The number of
logons (GLOGON), the number of compiles (GCOMPL), the
number of runs (GRUNS), the number of links (GLINKS) and
the amount of time (GTIME) spent on the VMS operating
system were collected automatically. The other three
time variables were the self-reported design time
(TOTDES), the self-reported coding time (TOTCOD) and the
total self-reported time (TOTTME). Table 4.1 lists and
defines the variables that were used to form the time

category.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NAME

TOTDES

TOTCOD

TOTTME

GCOMPL
GLINKS
GRUNS

GTIME

GLOGON

ABLE 4.1

VARIABLES USED TO DEFINE THE TIME CATEGORY

DESCRIPTION/DEFINITION

The total amount of reported time that a
team spent on the design phase of the
project.

The total amount of reported time that a
team spent on the coding/implementation
phase of the project.

The total amount of reported time that a
team spent on the entire project -
design and coding/implementation phases

The number of compiles for a team

The number of links for a team

The number of runs for a team

The amount of time a team spend logged
onto the VMS system

The number of times a team logged onto

the VMS systenm

The number of compiles (GCOMPL), the number of links

(GLINKS), the number of runs (GRUNS) and the number of

logons (GLOGON) were included in the time category

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because they may be used to explain how the time spent on
the VMS operating system was being used or what

activities were going on during that time period.

In addition to evaluating each of the individual
variables, a combined time category was tested for
significance. The eight time variables were converted to
z scores. Discriminant analysis (SPSSX) summed the eight
transformed time variables and calculated the
significance for the time category. 1In order to reject
the first operational hypothesis H, for Al for
productivity, the values for all or most of the time
variables should be significantly less for the treatment
group (CASE) than for the control group (non-CASE). If
the same system was developed in less time using CASE
technologies than without CASE technologies, we can claim

increased programmer productivity.

The second operational hypothesis Ho for A2 was tested

using a combination of the time category and the level of
system completeness. The systems were rated on the level
of completeness of 24 logical functions (Appendix A) that
were specified in the requirements. A "0 - 1 - 2" scale

was used for the rating. A totally complete system, one

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that completely met all the requirements for all

functions, had a rating of 48.

If a more complete system, one that met more of the
initial requirements, was produced in the same or less
amount of time using CASE technology than a system
produced without CASE technology, then the second
cperaticnal hypothesis H, for A2 for productivity will be
rejected, and we can claim increased programmer
productivity. If the level of completeness for the CASE
group was better than the level of completeness for the
non~CASE group in the same amount of time, then it can be
said that the CASE group was more productive than the non-
CASE groups. If the level of completeness was the same
for the two groups, but the CASE group used less time
than the non-CASE group, then it can be said that the
CASE group was more productive than the non-CASE group.
If the level of completeness was higher or the same for
the treatment group (CASE), but more time was required to
produce the system, then the null hypothesis cannot be
rejected and no conclusions can be made about programmer

productivity.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BELIEF 2:
The formal hypothesis that tests the second belief is:

(B)

Hy: There is no difference in the quality of the
system/program developed using CASE technologies and the
quality of the system/program developed without CASE
technologies.

H,: System quality is greater when CASE technologies are
used than when CASE technologies are not used.

This hypothesis is made operational with the following
hypotheses:

(B1)

Hj: There is no difference in the complexity of a system
produced with CASE technologies and the complexity of a
system produced without CASE technologies.

H,: A system produced with CASE technologies is less
complex than a system produced without CASE technologies.
(B2)

HO: There is no difference in the completeness of a
system produced with CASE technologies and the

completeness of a system produced without CASE

technologies.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

le A system produced with CASE technologies is more
complete than a system produced without CASE

technologies.

The quality of the final system was tested using the
complexity, size and completeness of the final system. A
higher quality system should be less complex and more
complete than system of lower quality.

The first operational hypothesis H, for Bl was tested by

0
comparing the complexity and size of the systems
developed without CASE technology and the complexity and

size of the systems developed with CASE technology.

Although size is an additional indicator of the
complexity of a system, for the sake of clarity, size
measures are discussed separately from complexity
measures. Size is an indicator of complexity; the larger
the system the greater the potential for increased
complexity. The systems developed for this research
should not differ in size; they werza all developed using
the same requirements. Therefure, it was not expected
that size would contribute to the complexity measure of
quality. However, if the sizes of the systems are the
same and less time was used to develop the same size

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system, it could be an indication of increased programmer
productivity. Table 4.2 lists and defines the eight

variables that were used to form the size category.

The number of lines of code (LOC), the number of comments
(CMMNTS) and the number of modules (MODULES) were
directly counted in the final systems. LENGTHN, ESTN,
IMPLEVEL, VOLUME and VOCAB are Halstead’s Software
Science measures and were all calculated from values that
were counted in the final systems. They were included in
the size category because they are different ways of

expressing the length or volume of a prcject.

In addition to evaluating each of the individual
variables, a combined size category was tested for
significance. The eight size variables were converted to
z scores. Discriminant analysis (SPSSX) summed the eight
transformed size variables and calculated the
significance for the size category. 1In order to reject a
null hypothesis that the sizes were equal, the values for
all or most of the size variables should be significantly
different between the control group (non-CASE) and the
treatment group (CASE). We would not expect the system
sizes to be significantly different; they were all

developed from the same requirements. We can claim

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TA .

VARIABLES USED TO DEFINE THE SIZE CATEGORY

NAME DESCRIPTION/DEFINITION
Loc Number of lines of code (excluding

comment lines and blank lines)

CMMNTS Number of lines of comments

MODULES Number of unique procedures and unique
functions

LENGTHN Sum of the number of operators and
operands
N = Nl + N2

ESTN Estimated program length is calculated

and differs from N, the program length
from direct observation
n, * logzn1 + n, * 1og2n2

IMPLEVEL Estimated program level or level of
implementation contributes to the level
of understanding and effort required to
write a computer program
(2 * n,)/(n, *N,)

VOLUME Program volume - the size of any
implementation of any algorithm

N * logzn

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 4.2 (continued)
VARIABLES USED TO DEFINE THE SIZE CATEGORY

VOCAB sum of number of unique operators and
unique operands

n=n, +n

1 2

increased system quality if the size of the system
developed using CASE technology is significantly less
than the size of the system developed using non-CASE

technology.

Eleven variables were used to define complexity. The
number of lines of code (LOC), the number of procedures
and functions invoked (CALLS), the number of iteratjons
statements (LOOPS), the number of selections statements
(SELECTS) and the total number of separate blocks within
the code (BLOCKS) were counted in the final systems.
LOC, BLOCKS and CALLS are direct indicators of length;
the longer the project the greater the potential for
complexity. LOOPS and SELECTS are indicators of the
number of decisions made to accomplish the task:; the more
decisions and iterations, the greater the complexity of
the system. Halstead’s number of unique operators (nz)
and number of unique operands (nl) are also directly

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

counted in the final project. Halstead'’s basic metrics,
n, and n,, are also two of Elshoff’s set of complexity
measures, the other two being data difficulty (DATADIFF)
and length (LENGTHN). Gordon’s CLARITY and Halstead’s
EFFORT are calculated from values counted in the final
system. CLARITY is the amount of effort required to
understand a computer program and EFFORT is the amount of
mental activity necessary to convert an algorithm to a
computer program; a more complex program should require
more effort to understand and code. Elshoff’s data
difficulty (DATADIFF) and difficulty (DIFFICULTY) were
also calculated from values counted in the final systemn.
DATADIFF is the average number of variables, constants or
literals; the more variables are used, the more chance
for additional complexity. DIFFICULTY measures the
number of errors in a program due to problems in
understanding the program; a less complex program should
have fewer errors in comprehension and therefore a lower
level of DIFFICULTY. Table 4.3 lists and defines the
eleven variables that were used to form the complexity

category.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 4.3

VARIABLES USED TO DEFINE THE COMPLEXITY CATEGORY

NAME

CALLS

LOOPS

SELECTS

BLOCKS

DESCRIPTION/DEFINITION

Number of lines of code (excluding
comment lines and blank lines)

Number of unique operands - the sum of
the number of unique constants (CONST),
unique variables (VARBL) and unique
literals (LITERALS)

Number of procedures (FEXTPRC) and
functions (FEXTFN) invoked

Number of REPEAT, WHILE and FOR loops
used

Number of CASE, IF and ELSE statements
used

The total number of PROCEDURE, FUNCTION,
BEGIN, IF, WHILE, CASE, FOR, REPEAT
statements

Number of unique operators - the sum of
the unique number of iteration
statements (REPEAT, WHILE, FOR),
selection statements (CASE, IF, THEN,
ELSE), symbols (mathematical and

Boolean), delimiters, sets, records,

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 4.3 (continued)
VARIABLES USED TO DEFINE THE COMPLEXITY CATEGORY

read statements, write statements,
function and procedure calls, the
number of begin and end statements, and
the number of open and close
statements.

CLARITY The amount of mental effort required to
comprehend a computer program

((nl* logznl + n, * logznz) * logzn)

(N * logzn)

(n.= n, + n,i N =N, + Nz)

1 1
n is the vocabulary of a computer
program
N is the length (amount of source code)
of a computer program
EFFORT The mental activity required to reduce an
algorithm to an actual computer program
((n1 + n2) * logzn)
(2 * n,)/(n, * N,)

DATADIFF The average number of variable appearances

Ny/n,

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 4.3 (continued)

VARIABLES USED TO DEFINE THE COMPLEXITY CATEGORY

DIFFICULTY One half of the product of the unique
operators and the data difficulty.
Corresponds to the number of errors in a
program due to the level of effort
required to understand the program

(n, * DATADIFF)/2

In addition to evaluating each of the individual variables,
a combined complexity category was tested for

significance. The eleven complexity variables were
converted to z scores. Discriminant anaiysis (SPSSX) summed
the eleven transformed complexity variables and calculated
the significance for the complexity category. In order to
reject the first operational hypothesis H, for B1l, the
values for all or most of the complexity variables should
be significantly different between the treatment group
(CASE) and the control group (non-CASE). If the systems
have a given functionality, we can claim increased system
quality if the complexity of the system developed using
CASE technology is significantly less than the complexity

of the system developed using non-CASE technology.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The second operational hypothesis H, for B2 was tested
using a level of system completeness. As described above,
a system was more complete if it met a greater number of
the requirements than another system. In order to reject
the second operational hypothesis Ho for B2 for system
quality, the levels of completeness of the CASE developed
systems and the non-CASE developed systems should be
significantly different. We can claim increased quality if
the level of completeness of the CASE developed systems
were higher than the level of completeness of the non-Case

developed systems.

If the null hypotheses can be rejected, then the research
will support the original beliefs. The above hypotheses
were tested at a 0.10 level using statistical analyses to
compare the control group (non-CASE) and the treatment

group (CASE).

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BELIEF 1

USE OF CASE TECHNOLOGIES INCREASES
THE PRODUCTIVITY OF THE PROGRAMMER

(A)Ho: THERE IS NO DIFFERENCE IN PROGRAMMER PRODUCTIVITY

(Al)Ho: THERE IS NO DIFFERENCE (AZ)HO: THERE IS NO DIFFERENCE IN
IN TIME THE LEVEL OF GOMPLETENESS
(SAME/LESS TIME)
AND

TIME TIME COMPLETENESS

THE TIME CATEGORY IS DEFINED BY: GCOMPL; GRUNS, GLINKS, TOTTIME,
TOTDES, TOTCOD, GLOGON, GTIME

COMPLETENESS 1S DEFINED BY: 24 REQUIREMENTS IN SPECIFICATIONS

FIGURE 4.1 BELIEF 1 AND SUPPORTING HYPOTHESES

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BELIEF 2
USE OF CASE TECHNOLOGIES INCREASES
THE QUALITY OF THE SYSTEM/PROGRAM BEING DEVELOPED
(B)HO: THERE IS NO DIFFERENCE IN THE QUALITY OF THE SYSTEM

(Bl)HO: THERE IS NO DIFFERENCE (B2)Ho: THERE IS NO DIFFERENCE IN
IN COMPLEXITY THE LEVEL OF COMPLETENESS

SIZE COMPLEXITY COMPLETENESS

THE SIZE CATEGORY IS DEFINED BY: LOC, CMMNTS, MODULES, LENGTHN,
EXTN, IMPLEVEL, VOLUME, VOCAB

THE COMPLEXITY CATEGORY IS DEFINED BY: LOC, EFFORT, CALLS, LOOPS,
BLOCKS, SELECTS, CLARITY,
Nl’ N2’ DATA DIFFICULTY

COMPLETENESS IS DEFINED BY: 24 REQUIREMENTS IN SPECIFICATIONS

FIGURE 4,2 BELIEF 2 AND SUPPORTING HYPOTHESES

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

DATA ANALYSIS

This chapter presents the analysis of the data collected
during the experiment. Additional information about the
methods used and the model for the experiment may be found
in Chapters 3 and 4 respectively. Appendices F through H
contain copies of the SPSSX statements and relevant

output.

THE HYPOTHESES

Increased productivity can be defined as: an improved
product is produced in the same amount of time or the same
product is produced in less time. Increased system
quality can be defined as: a more complete, consistent and
accurate project with more complete, consistent and
accurate documentation; there are fewer defects in the

final systen.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Given these two definitions, the following two beliefs

have prompted this research:

Belief 1: The use of CASE technologies increases the

productivity of the programmer.

Belief 2: Use of CASE technologies increases the quality

of the system/program being developed.

The hypotheses that test these beliefs are defined in
Chapter 4. If the null hypotheses can be rejected, then

the research will support the original beliefs.

The hypotheses were tested at a 0.10 level using
statistical analysis to compare the control group and the
treatment group. Data were collected about both the
process and the product. The data about the process
consisted of measures of time; both self-reported and
automatically collected during the coding process. The
data about the products were evaluated using size,

complexity and completeness variables.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SAMPLE SIZE

There were seven teams in the control group (non-CASE) and
four teams in the treatment group (CASE). The sample size
was determined by the number of students enrolled in each
quarter. The small sample size limited the statistical
analysis; more significant p values might have been

obtained with a larger sample size.

TYPE OF ANALYSIS

Discriminant analysis is a statistical technique that can
be used to classify subjects into groups based on a series
of variables and is often used to determine whether a
single variable maximizes the difference between two
groups. If a single variable determines the difference
between the groups, that variable is removed from the
analysis and the rest of the variables are re-evaluated.
This process is repeated until none of the remaining

variables maximize the separation between the two groups.

Discriminant analysis (SPSSX) used twenty-six variables

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for each team; seven teams from the control group (non-
CASE) and four teams from the treatment group (CASE). The
variables were grouped to form three categories: time,
size and complexity. Since none of the variables
maximized the difference between the two groups, the
analysis was a two group univariate test. The F values
were calculated and the levels of significance (p values)
were then calculated for each of the individual

variables. The small sample size indicated that t tests
were an appropriate measure of the difference between the

means of the two groups. The statistic, £2

is equal to
the F value calculated with the discriminant analysis

(SPSSX) and the p values obtained were used.

The systems were also rated on the level of completeness
of twenty-four logical functions (see Chapter 3 for
complete details). A 0-1-2 scale was used for the
rating. There were 24 requirements and a totally complete
system, one that completely met all the requirements for

all the functions had a rating of 48.

RESULTS OF DATA ANALYSIS

The levels of significance (p values) are reported for
each of the variables within the three categories: time,

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

size and complexity. The variables were combined within
the three categories and an overall category level of
significance was calculated and reported. Then the results
of the evaluation of the level of completeness are

described.

DATA ANALYSIS - TIME CATEGORY

The self-reported time for both the design phase (TOTDES)
and the coding phase (TOTCOD) is the amount of time that
the students described in their progress reports,
programmers’ logs and minutes of meetings. The reported
individual times and group times spent for each of the two
project phases were tallied. Data were automatically
collected during the coding phase. For each subject,
every logon (GLOGON), compile (GCOMPL), link (GLINKS), run
(GRUNS) and logoff was recorded. The logon and logoff
times were used to calculate the amount of time (GTIME)
spent on the VMS operating system. If a student did not
logoff correctly or was logged off by the system, the
amount of time was calculated using the last time recorded
before the next chronological logon. For complete

definitions of the variables, see Chapter 4.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The levels of significance (p values) for the difference
in means and the means for each of the eight variables for
the time category are listed in Table 5.1, and the SPSSX

code and relevant results are in Appendix F.

TABLE 5.1
LEVEL OF SIGNIFICANCE (P VALUES) AND MEANS

TIME VARIABLES (ALL TEAMS)

MEANS MEANS

CONTROL TREATMENT
NAME P_VALUES GROUP GROUP
TOTDES 0.1473 81.71 50.00
TOTCOD 0.1552 122.71 23.50
TOTTME 0.1091 204.43 73.50
GCOMPL 0.0589 3912.71 1652.50
GLINKS 0.0190 1057.86 559.75
GRUNS 0.0174 1023.14 536.25
GTIME 0.0326 210.86 164.00
GLOGON 0.1164 220.29 165.00

The differences in the number of runs and links are
significant at a 0.05 level. The amount of time spent
logged on to the VMS operating system was significant at
the 0.05 level and the number of compiles was significant

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at the 0.10 level. The treatment group (CASE) spent less
time on the VMS operating system, and compiled, linked,
and ran their system fewer times than the control group
(non-CASE). The other four variables, GLOGON, TOTCODE,
TOTDES and TOTTME were very close to the 0.10 level of
significance. Therefore, the CASE group used less time to

code the system than the non-CASE group.

However, there was one student who did not always follow
directions and at times managed to avoid the program that

counted the number of links and runs. The portion of the

program that counted the number of compiles, logons and
logoffs could not be circumvented. The discriminant
analysis was run without the team with the student who
circumvented the counting program and the levels of
significance and means for the number of links and runs

are listed in Table 5.2, and the SPSSX code and relevant

results are in Appendix G.

The number of links and the number of runs were no longer
significant at the 0.05 level, but were still significant
at the 0.10 level and do not affect the analysis. The

CASE group used a fewer number of links and runs than the

non-CASE group.

lo08

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE 5.2
LEVEL OF SIGNIFICANCE (P VALUES) AND MEANS

NUMBER OF LINKS AND RUNS - WITHOUT TEAM 3

(TREATMENT GROUP)

MEANS MEANS

CONTROL TREATMENT
NAME P _VALUES GROUP GROUP
GLINKS 0.0585 1057.86 717.00
GRUNS 0.0534 1023.14 686.33

The amount of time spent by the treatment group (CASE
uéers) was significantly less than the amount of time
spent by the control group (non-CASE users). Therefore,
the null hypothesis that there is no difference in the
amount of time used to develop the system was rejected.
The amount of time spent by CASE users was less than the
amount of time spent by non-CASE users to develop the

system.

DATA ANALYSIS - COMPLEXITY CATEGCRY

Although size is an additional indicator of the complexity
of a system, size measures will be discussed separately
from complexity measures (see Chapter 4). There are

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

eleven variables uced to indicate the complexity of the
final system. The number of executable lines of code
(LOC), the number of iteration statements (LOOPS), the
number of select statements (SELECTS), the number of
procedure or function calls (CALLS), the number of unique
operators (n2), the number of unique operands (nl) and the
number of blocks (Elshoff) of code (BLOCKS) were extracted
from the projects’ Pascal code. Gordon’s clarity
(CLARITY), Halstead’s effort (EFFORT), Elshoff’s data
difficulty (DATADIFF) and Elshoff’s difficulty
(DIFFICULTY) are calcuiated variables, depending upon two
or more of the measures accumulated from the actual Pascal
code. For complete definitions of the variables, see

Chapter 4.

Table 5.3 lists the levels of significance (p values) for
the difference in means and the means for each of the
eleven variables for the complexity category, and the

SPSSX code and relevant results are in Appendix F.

None of the differences in the complexity variables were
significant. Therefore, the null hypothesis that there
is no difference in the complexities of the two systems
could not be rejected. The complexity of the system
developed by CASE users could not be proved different from
the complexity of the system developed by non-CASE users.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3

LEVEL OF SIGNIFICANCE (P VALUES) AND MEANS

NAME
 Fele

n2
CALLS
LOOPS
SELECTS
nl
BLOCKS
CLARITY
EFFORT
DATADIFF

DIFFICULTY

DATA ANALYSIS - SIZE CATEGORY

COMPLEXITY VARIABLES (ALL TEAMS)

P_VAIUES
0.3296

0.7860
0.3671
0.8501
0.2113
0.4798
0.2909
0.4025
0.2119
0.2304

0.1809

1751.00
181.29
69.15
61.57
181.86
34.14
311.86
2078688.57
6401098.86
10.63

180.47

MEANS
TREATMENT
—GROUP
1437.50
165.50
45.50
56.50
112.00
33.25
211.75
1413530.00
3848281.75
7.93

132.29

The number of modules (MODULES), the number of executable

lines of code (10OC) and the number of comments (CMMNTS)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are extracted from the projects’ Pascal code. The length
of the project (LENGTHN), estimated length (ESTN),
implementation or program level (IMPLEVEL), volume
(VOLUME) and vocabulary (VOCAB) are calculated from
different measures that were extracted from the code.

These all are Halstead’s metrics.

The levels of significance (p values) for the difference
in means for each of the eight variables for the size
category are listed in Table 5.4, and the SPSSX code and

relevant results are in Appendix F.

None of the differences in the size variables were
significant. Therefore, the null hypothesis that there
is no difference in the sizes of the two systems could not
be rejected. The size of the system developed by CASE
users could not be proved different from the size of the

system developed by non-CASE users.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IABLE 5.4
LEVEL OF SIGNIFICANCE (P VALUES)

SIZE VARIABLES (ALL TEAMS)

MEANS MEANS
CONTROL TREATMENT
NAME P _VALUES GROUP GROUP
LOC 0.3296 1751.00 1437.50
CMMNTS 0.7259 188.15 221.00
MODULES 0.2421 34.00 25.75
LENGTHN 0.4608 4655.71 3694.75
ESTN 0.7508 1567.71 1398.25
IMPLEVEL 0.1878 0.006 0.008
VOLUME 0.5016 36553.71 28439.25
VOCAB 0.7767 215.43 198.75

DATA ANALYSIS - SIGNIFICANCE OF CATEGORIES (COMBINING

VARIABLES WITHIN CATEGORY)

The values for each of the variables were transformed into
2z scores. These 2z scores for each category were summed
using Discriminant Analysis procedure (SPSSX) and Table
5.5 lists the significance levels (p values) for each

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

category. The SPSSX code and relevant results are in

Appendix H.

TAB 5.5
LEVEL OF SIGNIFICANCE (P VALUES)

VARIABLES COMBINED INTO CATEGORIES (ALL TEAMS)

CATEGORY P_VALUES
COMPLEXITY 0.2110
SIZE 0.6532
TIME 0.0050

The differences in the summed variables for the time
category were significant. The differences in both the
combined variables for the size category and the combined
variables for the complexity category were not
significant. Since some of the complexity measures were
nearly significant, but the combined measure was not
significant, it might be concluded that the selected
complexity measures measure different aspects of the
program which probably are not related to each other.
None of the individual size measures were significant and
neither was the combined measure. These results should
not be too surprising since all the systems were designed
and coded to meet the same requirements. Almost all of

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the time measures were significant and the combined
measure was also significant. ILess time was spent coding
the CASE produced design; therefore, less computer

resources and human resources were used.

DATA ANALYSIS ~ COMPLETENESS OF THE SYSTEM

A system is complete if it meets the requirements. The
systems were rated on the level of completeness of 24
logical functions (Appendix E) that were specified in the
requirements. A "0 - 1 - 2" scale was used for the
rating. A system was rated a "0O" if it is totally
inoperable for the function being tested. A rating of "1
indicated that the system partially fulfilled the
requirements and a rating of "2" signified that the system
completely fulfilled the requirements. These ratings were
summed. The requirements were presented to the studants
as equally important. A totally complete system, one that
completely met all the requirements for all the functions
has a rating of 48. Figure 5.1 indicates the level of
completeness for the eleven procjects; Figure 5.2 the
percentage of completeness. The four projects, all from
the control group, that received a ‘0’ rating for all 24
specifications had run time errors caused by either a

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stack dump error or an access violation error; none of the
projects had compile errors. The three remaining projects
from the control group were each approximately 33%
complete. The four treatment group projects ranged from
44% to 75% complete. The documentation, users’ manuals
and programmers’ manuals, were of little or no help for
the implementation of any of the projects and no

conclusions about the system could be drawn from them.

ce
cs c7
c4 c3 T3 T1

TEAMS C2 cL T4 T2
] | 1 [i | | | |
| | | | | | | | |
0 6 12 18 24 30 36 42 48

SUM OF RATINGS ON THE 24 SPECIFICATIONS

SUM OF RATING ON THE 24 SPECIFICATIONS
(’T’ indicates the treatment group (CASE) and ’‘C’indicates
the control group (non-CASE). The numbers following
the ’T’ or ’C’ indicate the team within the group.)

IG
LEVEL OF COMPLETENESS

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cé6

cs c7
ca c3 T3 T1

TEAMS C2 cL T4 T2
| | | | | | | | |
| | | | | I | | |
0 25 50 75 100

PERCENTAGE OF COMPLETENESS

SUM OF RATINGS ON THE 24 SPECIFICATIONS
PERCENTAGE OF 24 SPECIFICATIONS COMPLETE
WITH A TOTAL OF 48 BEING PERFECTLY COMPLETE
(T’ indicates the treatment group (CASE) and ’‘C’indicates
the control group (non-CASE). The numbers following
the T’ or ’‘C’ indicate the team within the group.)
FIGURE 5.2
PERCENTAGE OF COMPLETENESS
The level of significance (p value) was calculated using the
mean ratings for both groups. Then the level of
significance (p value) was calculated omitting those teams

that had run time errors. Both values were significant at

the 0.05 level.

TABLE 5.6

SIGNIFICANCE (P VALUES) FOR SYSTEM COMPLETENESS

P VALUE (ALL TEAMS) P VALUE (WITHOUT 4 TEAMS WITH
RUN-TIME ERRORS)

0.002 0.045

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The differences in the level of completeness between the
treatment group and the control group were significant.
Therefore, the null hypothesis that there is no difference
in the completeness of the two systems could be rejected.
The system developed by CASE users was more complete than

the system developed by non-CASE users.

CONCLUSIONS

The null hypotheses that there is no difference between
programmer productivity and there is no difference between
the quality of a system produced using CASE technologies and
the same system produced not using CASE technologies were

both rejected.

From the above analysis, the null hypothesis concerning a
difference in the size of the final systems has not been
rejected. Therefore, it can be said the sizes of the
systems cannot be shown to be different and that conclusion
is to be expected since the project was designed and coded

from the same requirements.

The null hypothesis that there is no significant difference

in the time required to code the system was rejected. The

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

treatment group, CASE, used less time than the control
group, non-CASE. Since productivity can be defined as
producing the same product in a less amount of time, it was
concluded that the productivity of the teams was increased

by the use of CASE technologies for the design phase.

The level of completeness of the products between the
control group and the treatment group was different. The
treatment group (CASE users) produced a more complete
product. Since the treatment group also used less time to
produce the product, we concluded that a more complete
product was produced in less amount of time using CASE

technology.

The z values for the time variables for each team were
summed. In Figure 5.3, the sum of the z scores for the time
variables was plotted against the level of completeness for

each tean.

Complexity and completeness measure the quality of the final
system. A difference in the complexity of the final systems
was not rejected, however there was a difference in the
level of completeness of the final systems. The treatment
group (CASE) produced more complete systems. Although, the

differences in the complexity of the systems could not be

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rejected, the level of product completeness increased.
There was an increase in one aspect of the quality of the
CASE developed system over the non-~CASE develoned system.
The CASE developed systems were better able to meet the

specifications than the non-CASE developed systems.

TIME (Z SCORES)

10 .

-10 F 4

LEVEL OF COMPLETENESS

SUMMED Z SCORES FOR TIME VARIABLES
BY
LEVELS OF COMPLETENESS
('T’ indicates the treatment group (CASE) and ‘C’ indicates
the control group (non~CaASE). The numbers following
the ‘T’ or ‘C’ indicate the team within the group.)
FIGURE 5.3
TIME BY COMPLETENESS

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SUMMARY

The null hypothesis, there is no difference in the
productivity of the programmer who uses CASE technologies
and the productivity of the programmer who does not use CASE
technologies, was rejected. The productivity of the
programmer increased when CASE technologies were used. The
sizes of the systems were not significantly different,
however, more complete systems were produced in less time by
the treatment group (CASE) than the control group (non-

CASE).

The null hypothesis, there is no difference in the quality
of the system/program developed using CASE technologies and
the quality of the system/program developed without CASE
technologies, was rejected for the completeness aspect of
system/program quality. However, this hypothesis could not
be rejected for the complexity aspect of system/program
quality. The quality of the product/system with respect to
completeness increased when CASE technclogies were used.

The more the finished system fulfilled the requirements, the
higher the quality of the system. There was not a

significant difference in complexity between CASE developed

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and non-CASE developed systems. If quality was judged
solely on that one aspect no conclusions could be drawn with
respect to quality. This hypothesis was partially
supported.

Although the sample sizes in this research were small, the
productivity of the programmer and the quality of the
systems improved when CASE technologies were used. The
increase in productivity was shown because more complete
products were produced in a less amount of time by Case
users. The increase in one aspect of the quality of the
systems produced by the CASE users was shown because the
level of completeness of the CASE produced systems was
greater than the non-CASE produced systems. The analysis
supported the original research beliefs about programmer

productivity and system quality.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

CONCLUSION

The main purpose of this research was to examine the
impact of Computer-Aided Software Engineering (CASE) on
programmer productivity and system quality. Was
programmer productivity increased when the system was
designed using CASE technclogies? Was system quality
improved when the system was designed using CASE
technologies? An additional objective for this research
was to establish software metrics that could be used to
evaluate programmer productivity and system quality. This
chapter discusses the findings of the research and the
extent to which the goals were fulfilled. There is a
section on the impact this research might have on MIS
managers. The chapter concludes with some ideas for

future research.

This study makes three contributions to the study of
software development. First, to our knowledge, it is the
first controlled experiment investigating CASE tools. The
same software system was developed with and without CASE

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

technologies. Previous studies have involved CASE in
commercial settings and the same system is never developed

twice in a commercial setting.

Second, several metrics were identified that can be used
to identify and evaluate programmer productivity.

However, automated production performance monitors in a
commercial environment may alienate the system
analysts/programmers and any attempt to collect data
automatically must be implemented very carefully. The
number of iterations during different phases of the system
life cycle could impact time metrics. Again, this study
was limited by the ten-week quarter and coding was limited
to the second five weeks. The subjects may be able to use
more discretion than commercial programmers with respect

to the amount of time spent on the project.

The third contribution of this research is the
quantitative measures to the claims of increased
programmer productivity and system quality being made by
CASE vendors and otﬁers. In this study, programmer
productivity increased when CASE technologies were used to
design a software system. Also in this study, the quality
of the systems improved; more complete systems were
developed by the teams that used CASE technologies for

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system design. The designs developed with CASE
technologies were better than the designs developed
without CASE technologies. They fulfilled the
requirements specifications, and the finished system was
more complete. The designs developed with CASE
technologies were easier to understand. Programmers used
less time to code the CASE developed design than the non-

CASE developed design.

SUMMARY OF FINDINGS

The same task, coding a pretty printer, was accomplished
in less time, using less computer resources by the
treatment group (CASE). The p values obtained from the t
tests on the time variables indicated there was a
significant difference in the times required to code the
pretty printer between the control group (non-CASE) and
treatment group (CASE). The number of logons (GLOGON) and
the amount of time (GTIME) spent on the VMS operating
system for the control group (non-CASE) averaged almost
one and a half times the average for the treatment group
(CASE). The control group used more computer resources,
with twice as many compiles (GCOMPL) and almost twice as
many links (GLINKS) and runs (GRUNS) as the treatment

group. For exact figures, see Table 5.1.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The significant times only include the time and computer
resources used while coding on the VMS operating system.
It does not include time and computer resources consumed
while designing with the CASE tool on the PC workstation.
Usually when less time is spent coding the system, more
time is spent on the design. In this study the average
self~reported design time for the CASE group (50 hours)
was less than the average self-reported design time for
the non-CASE group (80 hours). There is further
discussion of the self-reported times in this chapter.
Programmer productivity during the coding phase increased

when CASE technologies were used.

There was also a significant difference in the levels of
completeness of the systems produced using CASE and those
not using CASE. The treatment group (CASE) used less time
to produce a more complete program than the control group
(non-CASE). The CASE-developed systems met the
specifications better than the non-CASE developed systems:;
therefore, the CASE-developed systems were more complete
than the non-CASE developed systems. If the non-CASE
developed systems had been more complete than the CASE
developed systems, the claim for increased programmer
productivity based solely on less coding time would not be
valid. We can, however, state that programmer

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

productivity was increased when the system was designed
using CASE technologies; our original belief about

increased programmer productivity was supported.

No statistically supported conclusions could be made from
the t tests on the complexity variables. There was no
significant difference in the complexity of the systems
developed using CASE technologies and those developed
without CASE technologies. However, the control group
(non-CASE) developed systems that contained a greater

number of lines of code (LOC), operators (n operands

oL

(n select statements (SELECTS), iteration statements

5
(LOOPS), PROCEDURE or FUNCTION calls (CALLS), and blocks
of code (BLOCKS) than systems developed by the treatment
group (CASE). The level of program clarity (CLARITY), the
level of program difficulty (DIFFICULTY), and the amount
of effort (EFFORT) required to reduce an algorithm to
implementation in a language were higher for the non-CASE
developed system. Data difficulty (DATADIFF), the ratio
of the total number of operands to the number of unique
operands, was higher for the non-CASE group. The means
for all of these variables were uniformly (but not

significantly) higher for the systems developed by the non-

CASE group. For exact figures, see Table 5.3.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There was a significant difference in the levels of
completeness of the systems. Since increased system
quality was defined as being less complex and more
complete, it can be concluded that system quality was
increased with respect to the level of system
completeness, but that more research is needed to make any
statements about system complexity. It seems likely that
had the non-CASE groups produced systems as complete as
the CASE groups, their software would have been more
complex. Our original belief about improved system
quality was partially supported by the significant

difference in completeness.

METRICS

This is the first time that Software Science metrics have
been used to evaluate CASE technologies in a controlled
environment. Other studies have automatically collected
data about the process, but none have also evaluated the
product using complexity metrics. One of the goals of
this research was to uncover some metrics that could be
used to evaluate either programmer productivity or system

quality.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The self-reported times are often inconsistent and, in
some instances, incomplete. While self-reported times are
the least costly to collect, this data is often not
accurate. The amount of self-reported time spent on
coding should have reflected all the time spent both
logged on and off the system during the coding phase. The
self-reported times were found to underestimate the amount
of time actually spent on the VMS operating system and,
therefore, cannot be considered accurate. The self-
reported times during the design phase cannot be verified
with any data collected automatically. There is reason to
believe that the design self-reported times may be more
reliable than the coding self~reported times. The design
times were collected at the beginning of the quarter and
the students appeared to be more conscientious during that
period. Second, the students knew that data was
automatically being collected during the coding phase and

may have felt that their reports were redundant.

The data collected automatically was complete, except for
the one student who circumvented the program that was
accumulating the data. The number of logons, compiles,
links and runs are indicators of what activities were
performed while the subjects were logged onto the VMS
operating system; the amount of time spent on the VMS

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operating system was used as an indicator of the time
spent coding the system. These measures, however, did not
take into account any of the time that was used to code
while not logged onto the system. Time not logged on the
system could have been used to write code or debug, and
such time use should have been included in the self-

reported time to code the system.

Results from this research on the complexity measures were
inconclusive; further research is required. The metrics
appeared to be measuring similar aspects of complexity,
and overall the variables selected were consistent. More
studies similar to Elshoff (1984) need to be conducted in
order to determine the most significant complexity
measures and to determine which metrics measure similar
components of complexity. The complexity aspect of
quality of a system is difficult to define, evaluate and

measure.

MANAGERIAL IMPLICATIONS
Information technology managers should be encouraged in
their quest for increased programmer productivity. A

major component of the software crisis is the inability to

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

measure, estimate, and improve programmer productivity.
This study indicates that use of CASE tools could improve

programmer productivity.

The control group (non-CASE) spent an average of 210.86
hours on the VMS operating system during the coding phase,
and the treatment group (CASE) spent an average of 164.00
hours. The treatment group saved 22.23% of the coding
time. A very comprehensive CASE workstation with
Excelerator costs up to $15,000. The salary and benefits
for novice programmers, recent Information Systems
graduates, is approximately $36,000 yearly. Therefore,
within 3 years, the savings on programmers’ salaries will
pay for the investment in CASE. These very conservative
productivity results should be useful to MIS managers who
must decide (or convince their parent organization) that
CASE technologies may increase programmer productivity and
help alleviate the "software crisis." CASE technologies
are cost effective on the basis of programmer

productivity.

Many of the students currently majoring in Information
Systems will be the applications-systems analysts of
tomorrow. Therefore, the results of this study may be
generalized to the entire population of professional

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘ system analysts. It should be noted that the students in
the Autumn 1989 quarter were novices in CASE and in
software engineering. Since they were not experienced
systems analysts or programmers, they might have been more
receptive to the new CASE technology than system analysts
or programmers with years of design or programming
experience without CASE technology. Programmers with
several years of experience are often reluctant to change
their style of programming or designing, often claiming
that their work is creative and that automation of the
process will stifle creativity. One of the researchers
involved with this study predicted less programmer
productivity with CASE due to an expected long learning
curve for novices. This did not occur in this study.
Other studies involving students learning new technologies
(Mirsa 1989; Mynatt 1989) also report a learning curve far
shorter than expected or experienced in a commercial
setting. The learning period might be longer for the
entire population of expert analysts than for the subjects
in this study. Gains in this study should be attainable
in a commercial setting but may take longer because
students are more adaptable. On the other hand,
professionals already know how to plan well, students do

not. It is possible that Excelerator provided a

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

disciplined environment for students that would not be

needed by professionals.

Nonetheless, information technology managers should be
mindful when applying these findings to a commercial
setting that the subjects were novices with CASE
technologies, the sample size was small and the project

was not a true "programming in the large" project.

FUTURE RESEARCH

Oonly one CASE tool, Excelerator, was used and the
experiment should be repeated using different CASE
products. Excelerator, a product of Index Technology
Corporation, was the first IBM PC based CASE product and
currently is the most widely used microcomputer CASE
tool. Excelerator is an upper CASE tool used to aid in
the requirements analysis and design phases of the system
development life cycle and is built around an integrated
data dictionary. Excelerator supports several different
structured design methodologies; the subjects in this
research used the Gane/Sarson data flow diagrams, the
Yourdon/Constantine structure charts, and the integrated

data dictionary. There is extensive verification checking

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

against the structured methodologies’ rules. Can the
results of this research be generalized to other upper
CASE tools, or lower CASE tools (code generators)? It
appears that similar results would be obtained if a
different upper CASE tool was used and the study
repeated. Use of a lower CASE tool would require re-
definition of data collection methods and evaluation

criteria.

This study reported on the results from only one task.
Future research and analysis is planned to include the

data from additional projects and additional CASE tools.

There is a possibility of confounding in that the students
were taught by the same instructor in two separate classes
in two separate quarters. There may be a history effect
in terms of the professional growth of the instructor.
Moreover, the instructor may have unconsciously done a
better job of answering questions and anticipating
problems during the second quarter (treatment group -
CASE). This possibility will be eliminated by repeating
the study with the treatment group (CASE) system
development first and the control group (non-CASE) system

development second.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Future research also should include direct investigation
of the design process and the design documentation. Data
could be collected about the length of time required to
design a project and the design itself could be evaluated
(Haas 1988). Instead of self-reported times for the
design, different types of data collection could be
implemented, e.g., video taping or verbal protocol
analysis. Additionally, the amount of time spent, and the
activities performed on the Excelerator workstation could
be automatically monitored in a manner similar to this
research’s monitoring on the VMS operating system during
the coding phase. In this study the effects of the design
were evaluated using the final software systems and the
coding process. This research was an indirect measure of
the design and further research should focus on the direct

measurement of the design activities.

In some sense, the systems (products) delivered by the
CASE and non-CASE teams were different. This is
demonstrated by the different levels of completeness
between the two systems. A future study might try to
obtain identical project completion levels by using a less
challenging task. This might cause a greater discrepancy

in the time and complexity variables.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This study might be expanded to measure the effect of CASE
on the maintenance phase of the software development life
cycle. Since we currently have projects that were
developed with and without CASE technologies, they could
be used as systems that require maintenance and students
enrolled in a future Software Engineering course would
perform the required updating. Since the systems in this
study implemented the same task with and without CASE, the
same enhancement or maintenance could be performed a
system from the control group and a system from the
treatment group. The designs originally developed before
the coding phase would be used to aid in the maintenance
tasks. In order to utilize the same maintenance task, an
identical level of completeness is required for both

systens.

A field experiment to confirm the findings of this study
would be useful. The effects of different CASE tools or
combinations of CASE tools could be evaluated throughout
the entire software development life cycle. Use of CASE
technologies would no longer be the only variable studied
during commercial software development. Several of the
variables that could no longer be controlled are the type
of task, programming language, operating system, stability

of subjects with respect to numbers and turnovers, and the

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

background of the subjects. 1In spite of some of the
control difficulties, the findings of such a study should
be richer in detail and insight than the results of a

controlled design experiment.

SUCCESSFUL RESEARCH

Was the research successful? This research accomplished
some of its objectives and partially met others. 1In spite
of the limited time, the small sample size, and subjects
without prior CASE knowledge or experience, significant
differences were found in both programmer/system analyst
productivity and system quality. Although there were no
significant differences between the complexity of the
systems developed by the two groups of students, there
were significant differences in the completeness of the
systems. It is probable that if the level of completeness
for the CASE and non-CASE systems was the same that there
would have been differences in the complexity of the two
systems. Future research needs to be done in the area of
software quality and the relationship between completeness

and complexity.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There were significant imprcvements when CASE tools were
used during the design phase. The results should be
useful for MIS managers considering the adoption of CASE
tools. This study should be viewed as a beginning for
establishing some metrics about the process and the
product. More research is needed on both CASE and
software metrics. Studies in commercial settings are
difficult, but once some standards for evaluating the
process and the product are established, this type of

research should be conducted in a commercial environment.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Acly, Ed (1988) YLooking Beyond CASE." IEEE Software,
March 1988, 39-43.

Aranow, Eric (1988) "When is CASE The Right Choice?"

Business Software Review, April 1988, Vol. 7, No. 5., 14-
17.

Arthur, Lowell Jay (1983) Programmer Productivity: Myths,
Methods and Murphology: A Guide For Managers, Analysts and
Programmers. John Wiley & Sons, New York.

Attewell, Paul and Rule, James (1984) "Computing and
Organizations: What We Know and What We don’t know,"
Communications of the ACM, Vol 27, No. 32, December 1984,
1184-1192.

Bachman, Charlie, (1988) "A CASE for Reverse Engineering,"
Datamation, July 1, 1988, Vol. 34, No. 13, 49-56.

Basili, Victor R. and Reiter, Robert W. (1981) "A
Controlled Experiment Quantitatively Comparing Software
Development Approaches." IEEE Transactions on Software
Engineering, Vol. SE-7, No.3, May 1981, 299-320.

Basili, victor R., Selby, Richard W. and Hutchens, David

H. (1986) "Experimentation in Software Engineering." IEEE
Transactions on Software Engineering, Vol. SE-12. No. 7,

July 1986, 733-743.

Beath, Cynthia Mathis (1988) "Some Problems in
Generalizing from Information Systems Research."
Presented at the TIMS/ORSA Joint National Meeting, April
25, 1988, Washington, D.C.

Behrens, Charles A. (1983) "Measuring the Productivity of
Computer Systems Development Activities with Function

Points." IEEE Transactions on Software Engineering, Vol.
SE-9. No. 6, November 1983, 648-652.

Boar, Bernard H. (1985) Application Prototyping: A Project
Management Perspective. American Management Association,
New York.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Boehm, Barry W. (1973) "Software and Its Impact: A
Quantitative Assessment," Datamation, Vol. 19, No. 5, May
1973, 48-59.

Boehm, Barry W., (1981) Software Engineering Economics,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Boehm, Barry W. (1987) "Improving Software Productivity."
IEEE Computer, September 1987, 43-57.

Boehm, Barry W., Gray, Terrance E. and Seewaldt, Thomas
(1984a) "Prototyping Versus Specifying: A Mulitproject
Experiment." IEEE Transactions on Software Engineering,
Vol. SE-10, No. 5, May 1984, 290-303.

Boehm, B. W., Penedo, M. H., Stuckle, E. D., Williams, R.
D., and Pyster, A. B. (1984b) "A Software Development
Environment for Improving Productivity." Computer, Vol.
17, No. 6, June 1984, 30-44.

Burkhard, Donald L. (1989) "Implementing CASE Tools."

Journal of Systems Management, May 1989, Vol. 40, No. 5,
20-25.

Cameron, Robert D. (1988) "An Abstract Pretty Printer."
IEEE Software, Vol. 5, No. 6, November 1988, 61-67.

Card, David (1988) "Major Obstacles Hinder Successful
Measurement." IEEE Software, Vol. 5, No. 6, November
1988, 82-86.

Card, David N., McGarry, Frank E. and Page, Gerald T.
(1987) "Evaluating Software Engineering Technologies."

IEEE Transactjons on Software Engineering, Vol. SE-13, No.
7, July 1987, 845-851.

Carey, Jane M. and McLeod, Raymond (1988) "Use of System
Development Methodology and Tools." Journal of Systems
Management, March 1988, Vol. 39, No. 3, 30-35.

Chen, Minder, Numaker, Jay F. and Weber, E. Sue (1989)
"Computer-Aided Software Engineering: Present Status and

Future Directions," Database, Vol. 20, No. 1, Spring 1989,
7"13 .

Chen, Peter P. (1976) "Entity-Relationship Model: Toward a
Unified View of Data." ACM Transactions on Database
Systems, Vol. 1, No.1l, March, 1976, 9-36.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chikofsky, Elliot J. (1988) "Software Technology People
Can Really Use." IEEE Software, Vol. 5, No. 2, March 1988,
8-10.

Chikofsky, Elliot J. (1989) "Making CASE Pay Off." CIO,
February 1989, Vol. 2, No. 5, 12-16.

Chikofsky, Elliot J. and Rubenstein, Burt L. (1988) "CASE:
Reliability Engineering for Information Systems." IEEE
Software, Vol. 5, No. 2, March 1988, 1l1-16.

curtis, Bill (1983) "Software Metrics: Guest Editor’s

Introduction." IEEE Transactions on Software Engineering,
Vol. SE-9, No. 6, November 1983, 637-638.

de la Torre, Jose. (1988) "“Quality-assured Software in
4GL/CASE." Business Software Review, March 1988, Vol. 7,
No. 3, 30-33.

DeMarco, Thomas (1979) Structured Analysis and System
Specification. Prentice-Hall, New Jersey.

DeMarco, Thomas (1982) Controlling Software Projects,
Yourdon Press, New York.

Eliot, Lance B. and Scacchi Walt (1986) "Towards a
Knowledge~Based System Factory: Issues and
Implementations." IEEE Expert, Vol. 1, No. 4, Winter
1986, 51-58.

Elshoff, James L. (1984) "Characteristic Program
Complexity Measures." Proceedings of the 7th International
Conference on Software Engineering, ¥March 1984, Orlando,
Florida, 288-293 IEEE Computer Society Press, Los Angeles,
California.

Fairley, Richard E. (1985) Software Engineering Concepts.
McGraw~Hill Company, New York.

Fersko-Weiss, Henry (1990) "CASE Tools for Designing Your
Applications," PC Magazine, Vol. 9, No. 2, January 30,
1990, 213-251.

Fitzsimmons, Ann and Love, Tom (1978) "A Review And
Evaluation of Software Science." Computing Surveys, Vol.
10, No. 1, March 1978, 3-18.

Flak, Howard (1989) "Software Vendors Serve Up Varied
Palette for CASE Users." Computer Design, Vol. 28, No. 1,
January 1, 1989, 70-80.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frank, Werner (1988) "The Myth is Reborn." Software
Magazine, Vo. 8, No. 8, August 1988, 8-10.

Frenkel, Karen A. (1985) "Toward Automating the Software-

Development Cycle." communications of the ACM, Vol. 28,
No. 6, June 1985, 578-589.

Freeman, Peter (1983) "Fundamentals of Design." in

orial Software Desi Techniques o Edition,
edited by Peter Freeman, IEEE Computer Society Press,
Silver Spring, Maryland, 2-22.

Gannon, J. D. (1977) "An Experimental Evaluation of Data

Type Conventions." Communications of ACM, Vol, 20, No. 8,
August 1977, 584-595.

Gibson, Michael Lucas (1989) "The CASE Philosophy." BYTE.
April 1989, 209-218.

Gilb, Thomas (1977) Software Metrics. Winthrop Publishers,
Inc. Cambridge, Massachusetts.

Glass, R. L. (1982) "Modern Programming Practices: A
Report from Industry", Prentice-Hall, Englewood Cliffs,
New Jersey, 1982 as cited in Abdel-Hamid, Tarek K. (1988)
"Understanding the "90% Syndrome" in Software Project
Management: A Simulation-Based Case Study", The Journal of
Systems and Software, Vol. 8, No. 4, August 1988, 319-330.

Gordon, Ronald D. (1979a) "Measuring Improvements in

Program Clarity." IEEE Transactions on Software
Engineering, SE-5, No.2, March 1979, 79-90.

Gordon, Ronald D. (1979b) "A Qualitative Justification for
a Measure of Program Clarity." IEEE Transactions on
Software Engineering, SE-5, No.2, March 1979, 121-128.

Grady, Robert B. (1987) "Measuring and Managing Software
Maintenance." IEEE Software, Vol. 4, No. 5, September
1987, 35-45.

Gurbaxani, Vijay and Mendelson, Haim (1987) "“Software and
Harware in Data Processing Budgets." IEEE Transactions on
Software Engineering, Vol. SE-13, No. 9, September 1987,
1010-1017.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Haas, David F. and Waguespack, Leslie J. (i$89) ®Sizing
Assignments: A Contribution From Software Engineering to

Computer Science Education." o s the tie
SIGCSE Technical Symposjum on Computer Science Education,

Louisville, Kentucky, February 23-25, 1989, eds. Barrett,
Robert A. and Mansfield, Maynard J., 190-194, SIGCSE
Bulletin, Vol. 21, No. 1, The Association for Computing
Machinery, New York, New York.

Hall, William E. III and 2weben, Stuart H. (1986) "The
Cloze Procedure and Software Comprehensibility

Measurenment," IEEE Transactions on Software Engineering,

Halstead, Maurice H. (1977) Elements of Software Science.
Elsevier, New York.

Hanna, Mary Alice (1990) "Move Is On To Tie Vision To
Information Systems," Software Magazine, Vol. 10, No. 1,
January 1990, 39-45.

Hartog, Curt and Herbert, Martin (1985) Opinion Survey of

MIS Managers: Key Issues,"™ MIS Quarterly, Vol. 10, No. 4,
December 1986, 351-361.

Hausen, Hans~Ludwig and Mullerburg, Monika (1981)
"Conspectus of Software Engineering Environments."
Proceedings of S5th International Conference on Software
Engineering, 34-43.

Humphrey, Watts S. (1988) "Characterizing the Software

Process: A Maturity Framework." IEEE Software, Vol. 5, No.
2, March 1988, 73-79.

Humphrey, Watts S. (1989) Managing The Software Process.
Addison-Wesley Publishing Company, Reading, Massachusetts.

Index (1987). Excelerator. Cambridge, Mass: Index
Technology Corporation.

Jackson, Ken (1988) "Providing For The Missing Steps."
UNIX Review, Vol.6, No. 11, 55-63.

Jackson, Michael A. (1983) Systems Development. Prentice
Hall, Inc. Englewood Cliffs, New Jersey.

Jones, Capers (1986) Programming Productivity. McGraw-Hill
Book Company, New York.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Joyce, Daniel (1987) "An Identification and Investigation
of Software Design Guidelines for Encapsulation Units,"
Doctoral Dissertation, Temple University 1987.

Knight, John C. and Leveson, Nancy G. (1986) "An
Experimental Evaluation of The Assumption of Independence
in Multiversion Programming." IEEE Transactions on

Software Engineering, Vol. SE-12, No. 1, January 1986, 96-
109.

Kwong, Arnold W. (1988) "“A CASE of Culture Shock."

Business Software Review, Vol. 7, No. 5, April 1988, 26-
27.

Lee, Wayne (1975) Experimental Design and Analysis. W.H.
Freeman and Company, San Francisico, California.

Levine, Harvey A. (1989) "Two Separate Worlds Moving
Slowly Closer." Software Magazine, Vol. 9, No. 3, March
1989, 32-40.

Lewis, T. G. (1988) "software and The Single Programmer."

Dr. Dobbs Software Engineering Sourcebook, Winter 1988, 18-
27.

Lientz, B. P. and Swanson, E. B. (1980) Software

Maintenance Management, Addison-Wesley, Reading,
Massachusetts.

Linger, Richard C., Mills, Harlan D. and Witt, Bernard I.

(1979) Structured Programming: Theory and Practice.
Addison-Wesley Publishing Company, Reading, Massachusetts.

Loh, Marcus and Nelson, R. Ryan, (1989) "Reaping CASE
Harvests," Datamation, Vol. 35, No. 13, July 1, 1989, 31-
36.

Mahmood, Mo A., (1987) "“System Development Methods-~A
Comparative Investigation," MIS Quarterly, Vol. 11, No. 3,
September 1987, 293-311.

Martin, Charles F. (1988a) "Getting CASE in Place."
Business Software Review, Vol. 7, No. 5, April 1988, 20-
25.

Martin, Charles F. (1988b) "Second-Generation CASE Tools:

A Challenge to Vendors." IEEE Software, Vol. 5, No. 2,
March 1988, 46-49.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Martin, James (1982) icatijo velo
Programmers, Prentice Hall, Englewocod Cliffs, New Jersey.

Martin, James and McClure, Carma (1988) Structured

Techniques: The Basis for CASE. Prentice Hall, Englewood
Cliffs, New Jersey.

McClure, Carma (1989) CASE is Software Automation.
Prentice-Hall, Englewood Cliffs, New Jersey.

McWilliams, Gary (1989) "Integrated Computing
Environments." Datamation, Vol. 35, No. 9, May 1, 1989, 18-
21.

Messenheimer, Susan and Weiszmann, Carol (1988) "Quality
Software Quest." Software Magazine, Vol. 8, No. 2,
February 1988, 29-36.

Misra, Santosh K. and Subramanian, Venkat (1988) "An
Assessemnt of CASE Technology for Software Design."

Information and Management, Vol. 15, No. 4, November 1988,
213-228.

Myers, Glenford J. (1978) "A Controlled Experiment in
Program Testing and Code Walkthroughs/Inspections",

Communications of the ACM, Vol. 21, No. 9, September 1978,
760-768.

Mynatt, Barbee T. and Leventhall, Laura Marie (1989) “A
CASE Primer for Computer Science Educators." Proceedings
of the Twentieth SIGCSE Technical Symposium on Computer
Science Education, Louisville, Kentucky, February 23-25,
1989, eds. Barrett, Robert A. and Mansfield, Maynard J.,
122-126.

Necco, Charles R., Gordon, Carol L. and Tsai, Nancy W.
(1987) "Systems Analysis and Design: Current Practices,"
MIS OQuarterly, Vol. 11, No. 4, December 1987, 461-475.
Necco, Charles R., Tsai, Nancy W. and Holgeson Kreg W.
(1989) "Current Usage of CASE Software." Journal of
Systems Management, Vol. 40, No. 5, May 1989, 6-11.

Nejmeh, Brian A. (1988) "“Designs on Case." UNIX Review,
Vol. 6, No. 11, November 1988, 45-50.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Norman, Ronald, J. and Nunamaker, Jay F. (1988) "An
Empirical Study of Information Systems Professionals’
Productivity Perceptions of CASE Technology." Proceedings
e \ ‘o :

Systems, Minneapolis, Minnesota, November 30-December 3,
1988, eds. DeGross, Janice I. and Olson, Margrethe H., 111-
118 L]

Norman, Ronald, J. and Nunamaker, Jay F. (1989a) "CASE
Productivity Perceptions of Software Engineering
Professionals." Communications of the ACM, Vol. 32, no. 9,
September 1989, 1102-1108.

Norman, Ronald J. and Nunamker, Jay F. (1989b) "Integrated
Development Environment: Technological and Behavioral
Productivity Perceptions," The 22nd Hawaii International

Conference on System Sciences, Vol. II, ed. Shriver, Bruce
D., January 3-6, 1989, 996-1003.

Oppen, Derek C. (1980) "Prettyprinting." ACM Transactions

on_Programming Lanquages and Systems, Vol. 2, No. 4,
October 1980, 465-483.

Page-Jones, Meilir (1988) The Practical Guide to
Structured Systems Design. Yourdon Press, Englewood
Cliffs, New Jersey.

Patton (1986). Flow Charting II+ [Computer Progam].
(Version 2.40B). Patton & Patton Software Corp, San Jose,
California.

Percy, Tony (1988) "“"What CASE can’t do yet."
Computerworld, Vol. XXII, No.25, June 20, 1988, 59-60.

Pressman, Roger S. (1982) Software Engineering: A
Practitioner’s Approach. McGraw-Hill Company, New York.

Pritsker, A. Alan B. (1984) Introduction to Sjimulation and
Slam II. John Wiley & Sons, New York.

Ramamoorthy, C.V, Prakash, Atul, Tsai, Wei~Tek and Usunda,
Yutaka (1984) "Software Engineering Problems and
Perspectives," Computer, Vol. 17, No. 10, October 1984,
191-209.

Ramanathan, Jayashree and Sarkar, Soumitra (1988)
"Providing Customized Assistance for Software Lifecycle

Approaches." IEEE Transactions on Software Engineering,
Vol. 14, No. 6, June 1988, 749-757.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rinaldi, Damian (1989) "The CASE Way of Life; To Each His
own Method." Software Magazine, Vol. 9, No. 5, April 1,
1989, 33-42.

Rochester, Jack B. (1989) "Building More Flexible
Systems." I/S Analyzer, Vol. 27, No. 10, October 1989,
1-12.

Rombach, H. Dieter (1987) "A Controlled Experiment on the
Impact of Software Structure on Maintainability." IEEE

Transactions on Software Engineering, Vol. SE-13, No. 3,
March 1987, 344-354.

Rubin, Lisa F. (1983) "Syntax-Directed Pretty Printing - A
First Step Towards a Syntax-Directed Editor." IEEE

Transactions on Software Engineering, Vol. SE-9, No. 2,
March 1983, 119-127.

Schindler, M. (1981) "1981 Technology Forecast-Software,"
Electronic Design, Vol 29, No. 1, January 1981, 190-199 as
cited in Shemer, Itzhak (1987) "Systems Analysis: A
Systemic Analysis of a Conceptual Model," Communications
of the ACM, Vol. 30, No. 6, June 1987, 506-512.

Selby, Richard W., Basili, Victor R. and Baker, F. Terry
(1987) "Cleanroom Software Development: An Empirical

Evaluation," IEEE Transactions on Software Engineering,
Vol. SE-13, No. 9, September 1987, 1027-1037.

Shemer, Itzhak (1987) "Systems Analysis: A Systemic
Analysis of a Conceptual Model," Communications of the
ACM, Vol. 30, No. 6, June 1987, 506-512.

Smith, David J. and Wood, Kenneth B (1987) Engineering
Quality Software: A Review of Current Practices, Standards

and Guidelines Including New Methods and Development
Tools, Elsevier Applied Science, New York.

Stevens, W. P., Constantine, L. L., and Myers, G. J.

(1974) "structured Design." IBM Systems Journal, Vol. 13,
No. 2, 115-139.

Stratland, Norman (1989) "Payoffs Down the Pike: A CASE
Study." Datamation, Vol. 35, No. 7, April 1, 1989, 32-
33,52.

Teichroew, Daniel and Hershey, Ernest A. (1977) "“PSL/PSA:
A Computer-Aided Technique for Structured Documentation
and Analysis of Infromation Processing Systems." IEEE
Transactions on Software Engineering, Vol. SE-3, No. 1,
January 1977, 41-48.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Topper, Andrew (1990), "Excelerator," PC Magazine, January
30, 1990, Vol. 9, No. 2, 224-230.

Turner, Ray (1984) Software Engineerin ethodolo
Reston Publishing Company, Inc., Reston, Virginia.

Voelcher, John (1988) "“Automating Software: Proceed with
Caution." IEEE_Spect , Vol. 25, No. 7, July 1988, 25-
27.

Wallace, Steve (1988) "Methodology: CASE’s Critical
Cornerstone." Business Software Review, Vol. 7, No. 5,
April 1988, 17-20.

Warnier, Jean-Dominique (1981) Logical Construction of
Systems. Van Nostrand Reinhold, New York, 11-38.

Wasserman, Anthony J. and Gutz, Steven (1982) "The Future

of Programming," Communications of the ACM, Vol. 25, No.
3, March 1982, 196-206.

Weber, Herbert (1989) "From CASE to Software Factories."
Datamation, Vol. 35, No. 7, April 1, 1989, 34-36,52.

Weyuker, Elaine J. (1988) "Evaluating Software Complexity

Measures." IEEE Transactions on Software Engineering, Vol.
SE-14, No. 9, September 1988, 1357-1365

Whitten, Jeffrey L. and Bentley, Lonnie D. (1987) Using
erato o stems lysis and Design, Times
Mirror/Mosby College Publishing, St. Louis, Misssouri.

Yourdon, Edward (1988) "CASE Competition is All Over the
World," Software Magazine, (International Edition) Vol. 8,
No. 14, November 1988, 53-60.

Yourdon, Edward N. (1989a) "Software METRICS You can’t
control what you can’t measure," American Programmer, Vol.
2, No 2, February 1989, 3-11.

Yourdon, Edward (1989b) Modern Structured Analysis,
Yourdon Press, Englewood Cliffs, New Jersey.

Yourdon, Edward N. and Constantine, Larry L. (1979)

Structured Design. Prentice-Hall, Englewood Cliffs, New
Jersey.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

PRETTY PRINTER SPECIFICATIONS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software Engineering

22-485-322-001

Project Specifications

This project involves designing, coding, implementing, and
testing a Pascal "pretty printer". A pretty printer is a
software tool which formats programs (source code) without
syntax errors into a format which is easy to read,
understand, and maintain. You can assume that the programs
which are run through the pretty printer have been compiled

and contain no syntax errors.

A pretty printer can be used in many different ways. One
possible use is in a large data processing/programming
shop. Since each programmer has his/her own style of
programming, the pretty printer can be used to standardize
all of the code produced in the shop. In this manner, all
of the code is easily understood and follows the same style

guidelines to allow for easy maintenance in the future.

——

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The pretty printer package should be user friendly. A user
interface should be present. However an elaborate one is

not necessary for the package.

The pretty printer should be able to perform the following

tasks for each program run through the package:

1. Capitalize all reserved words. Consult a Pascal

Reference Manual for a list of reserved words.

2. Alphabetize all declarations in the CONST, TYPE, and
VAR sections of the program. All of the corresponding

comment lines should also be moved correctly.

3. Alphabetize procedures and functions in the code by
the procedure/function name. If the procedure/functions
are physically alphabetized, the Pascal FORWARD command
must be used in order to compile the resulting program
correctly.

If an index table is built to perform the

alphabetizing, the FORWARD command is unnecessary.

4. Allow for output of the pretty printer to be directed

to a file, the screen, and/or a printer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. The keywords CONST, TYPE, and VAR should be on a line

by themselves.

6. Only one declaration per line is allowed in the CONST,

TYPE, and VAR sections of the program.

7. The BEGIN and/or END of each section, declaration, or
construct should indicate the construct. Examples are as

follows:

END (*recordx*)

BEGIN (*case¥*)
(statements)

END (*case¥)

etc.

8. The BEGIN and END of each procedure or function should

contain a comment indicating the name of the procedure or

function.

9. Each line should be less than or equal to 120
characters in length. However, if you are printing on 8.5"
X 11" paper, each line should not exceed 80 characters in

length.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10. The keywords REPEAT, BEGIN, and RECORD should have no
program text (other than comments) following them on the

line in which they appear.

11. All matching ENDs, UNTILs, etc. should be on lines by
themselves and aligned with their corresponding previous

keyword. An exception is with items similar to the RECORD
construct. In this situation, the matching END should be

aligned with the name of the record. For example,
RECNAME = RECORD
(statements)

END (*recordx*)

12. Two blank lines should appear before and after each

procedure and function.

13. At least one space should appear before and after each

LT Wy andg =",

14. Only one executable statement is allowed per line.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15. The number of spaces for indentation should be between
3 and 10 (inclusive). The exact number is left to your
discretion. However, the indentation must be consistent

throughout the progran.

16. The statements or declarations within an indented body
should be aligned. For example, 1ihe up all variable
declarations indented under a VAR statement. Also line up
all the statements indented under an IF-THEN-ELSE

statement.

17. The PROGRAM statement, CONST, TYPE, VAR keywords,
BEGIN, and END of the main program should be aligned at the

left margin.

18. Procedure and function headings should be aligned with
the keywords of the surrounding procedure, function, or

program.

19. The declaration keywords (CONST, TYPE, VAR), and BEGIN-
END blocks of procedure and functions should be aligned
with the procedure headings. Procedures/functions that are
physically within another procedure/function (not the main
program) should be indented and any declaration keywords

aligned with the appropriate headings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20. All declarations in the CONST, TYPE, and VAR sections

should be indented from these keywords.

21l. The bodies of FOR, IF-THEN, IF-THEN-ELSE, WHILE, WITH,
and CASE statements along with RECORD declarations should

be indented from their corresponding keywords.

22. If a body of a FOR, IF-THEN, IF-THEN-ELSE, WHILE, or
WITH statement is a compound statement (more than one
cormand), then the BEGIN should follow the keyword on then
next line and the END should be on a line by itself aligned
with the corresponding BEGIN. When a REPEAT loop appears
on more then one line, the UNTIL is aligned with the

REPEAT.

Comments

23. It is at your discretion to choose left and right
column delimiters for comments. These delimiters can be
aligned with the Pascal statements that are being
documented or they can be to the right of the Pascal
statements. The key with comments will be in "keeping"

them with the Pascal statement they describe.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24. Each CONST, TYPE, and VAR declaration must have a

descriptive comment appended to the right of the line.

The following shows some acceptable formats for IF-THEN-
ELSE statements. The specific format chosen by your pretty
printer package is at your discretion and does not have to
necessarily match what is shown below. However, the format
you choose should be thoroughly documented and consistent

throughout the program.

1. A compound IF-THEN-ELSE statement may be formatted as
follows:

IF (expression) THEN
BEGIN
(statements)
END
ELSE
BEGIN
(statements)
END

2. A non-compound IF-THEN-ELSE statement may be formatted
as follows:

IF (expression) THEN
statement

ELSE
statement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. If nested IF-THEN-ELSE statements exist, they may be
formatted as follows:

IF (expression) THEN
BEGIN
(statements)
END
ELSE
BEGIN
IF (expression) THEN
BEGIN
(statenents)
END
ELSE
BEGIN
(statements)
END
(statements)
END

Limitations

1. You may assume that all of the source code is in 132-
column format.

2. You may also assume that no syntax errors exist in the
programs which shall be run through the pretty printer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

SIX ASSUMPTIONS

MODIFICATIONS TO PRETTY PRINTER SPECIFICATIONS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Assumptions made during the Autumn 1989 Software
Engineering Class about the Pascal source code that is the
input for the Pretty Printer.

1. Pascal source code must be able to be compiled,
therefore having no syntax errors.

2. PROCEDURES must not be nested.

3. There must be at least one blank line between logical
sections of code (such as: VAR, CONST, TYPE, PROGRAM,
PROCEDURES and FUNCTIONS).

4. All comments must be closed on the same line that they
are opened.

5. There can not be any statements after, or in-between
comments

6. All PROCEDURES must have a forward command (if you are
chysically sorting the PROCEDURES).

7. Output should cover 120 cclumns, not 120 columns or 80
columns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C

INITIAL QUESTIONNAIRE
USED TO DETERMINE LEVEL OF EXPERIENCE, DEMOGRAPHICS,

GPAS AND TEAM MEMBER PREFERENCES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IS 322 (SOFTWARE ENGINEERING)

NAME:

AGE:

PREVIOUS COMPUTER CO ES:
(please include any computer science, computer
engineering, high school courses, special work shops, etc)

PREVIOUS WORK EXPERIENCE - WITH COMPUTERS:

(pPlease list all co-cgp and other work experiences that
involve computers - including the company, all your
responsibilities and the amount of time)

(MICROS, Main Frames, VAX, Packages, CASE Tools, Other)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OTHER COURSES YOU ARE TAKING THIS QUARTER:

PEOPLE YOU WOULD LIKE TO WORK WITH:

PEOPLE YOU WOULD NOT LIKE TO WORK WITH:

GPA:
OVERALL
IS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

What are your strengths (academically and/or computer
related)?

What are your weaknesses (academically and/or computer
related)?

Have you ever worked in a design or programming team?
Where? Type of project?

What are your feelings about working in a team environment?
(better situation, worse?) And why?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX D

COURSE SYLLABUS AND GRADING POLICY
REQUIREMENTS FOR PROGRAMMERS MANUAL, USERS MANUAL

AND PROGRAMMERS LOGS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOFTWARE ENGINEERING (IS 322)

Course prerequisites: IS 280 and IS 321.

Text Books:
Required: Structured Systems Design
Page-Jones
Yourdon Press (1988) 2nd Edition
Optional: Software Engineering Concepts
Richard Fairley
McGraw-Hill (1985)

This course is designed to further develop your knowledge of
structured programming techniques and methods, particularly
as they relate to larger, multi-programmer projects. You
will be working in teams with 3 or 4 classmates (depending
upon the size of the class). A major project will be
completed in three separate phases: design, implementation
and testing. You will be implementing another team’s design
and then testing another team’s implementation. The members
of the teams may change for each phase: you may be working
with different team members as the project stages change.

Student Evaluation:
Final grades will be determined as follows:

Project
Design 25%
Implementation 25%
Testing 10%
Homework 10%
Log 5%
Final Test 25%

+/- 5% Instructor’s discretion

Homework will consist of project progress reports and two
very short (2 -3 page) papers: due dates are attached. Each
team member will submit his/her own evaluation of the
progress that the team is making during the particular
project phase. In addition to the progress reports, each
student should maintain a log of time spent on ALL course
activities: readings, meetings, writing code, debugging,
testing, etc. Each entry in the log should be annotated
with comments: these logs will provide an overview of your
activities during the quarter and possibly help me
change/improve the course. Logs will be handed in at the
final exam, but will be date stamped during the quarter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOFTWARE ENGINEERING (IS 322)
WEEK TOPICS

1 Chapter 1 Introduction to
Software Engineering
Chapter 2 Planning a Software

Project
2 + 3 Chapters Software Design
3,8,9
4 + 5 Chapters Implementation
4,5,7,11
6 Walkthroughs + Inspections
7 + 8 Handouts Verification and
Validation

13.4 (PJ) Software Maintenance
Chapter 9 (Fairley)

9 + 10 Chapter 3 Cost Estimation
(Fairley)
13.5 (PJ)
Chapter 10 Summary
(Fairley)

**You are responsible for material in the readings and
handouts, whether it is covered or not covered in class.
Attendance is not required, but ‘I missed class’ is not an
acceptable excuse for not being aware of any changes of due
dates, project requirements, test dates or meetings.

**It is expected that all members of the class will act in
an honest, ethical and moral manner.

% % % &k %k kkdk
No drops after the third week of class
No makeup tests or homework

No final grades of incomplete
kkkkhkkkkk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOFTWARE ENGINEERING (IS 322)

The project will be evaluated as follows:
The completeness of the project and how well it performs.
(100%, 75%)
Documentation
Programmer’s manual
User’s manual
Internal documentation
The actual code for the project.
Your programs must be structured.
One function/task -~ one module
All variables must be meaningful
No global variables; all values must be passed
through parameter lists.
Indenting, labeling and other standards - covered in
previous classes -~ should be followed.
Group Dynamics/Interaction/Cohesiveness
Progress at Milestones:
walkthroughs
inspections
There will be a complete evaluation at the end of each of
the two phases based on the work submitted, instructors
evaluation and each team member’s independent evaluation of
each of the other member of the team.

Programmer’s manual:
For the technically trained person - install, implement
and modify the project.
Table of contents
Index
Built in the design phase:
verbal technical description
structure charts
data flow diagrams
data dictionary
module function specifications
module interfaces and integration
data structures and/or record layouts
Built in the implementation phase:
the actual code
implementation restrictions
any changes (and reasons) to the original design -
and effects of the changes
compiling and linking instructions
any changes to the data structures and/or records and
why internal documentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Built in the testing phase
copy of test data
suggestions for improvement

better performance
better interface
better error handling

User’s manual:

For the untrained/naive user - assume they know how to
turn on the computer and do not understand anything else
about computers.

Table of contents

Index

Describe the entire package and its usage

A tutorial?

Error handling

Started during the design phase, but fully developed and
then modified (if necessary) during the testing phase.

Programmer’s_loqg:

As stated above, a complete record of your activities.
If you were to be replaced on the project (and that will not
happen after the third week of the quarter) someone could
read your activity log and be able to replace you on the
team. This should also include any structure charts, data
flow diagrams, notes, specifications, decision rational,
comments ~ any relevant information.

**A11 modules will be compiled separately. This will allow
you to test them separately and then link them for the final
project.

**x*In addition to the weekly progress reports..for every
meeting that your group has someone (designated by the group
and may be someone different each time) will take minutes of
the meeting and give me a copy. Minutes will include:

Time and duration of meeting

Names of attendees

Subject matter

Decisions and why

Status of project

what will be accomplished during the following week
Time and place of next meeting

**Warning: This course could be dangerous to your health,
your social life and your performance in other courses. As
usual, get started early, work steadily and try to get some
sleep.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX E

PROGRAMS USED TO TEST THE PRETTY PRINTER

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{**** Test for Capitalizing of all reserved words #***}

program sotypical (input,output); {PROGRAM)
const limit = 10; {CONStY
poundsign = '#';

amorcita = 'ilana‘;

type hues = (red,blue,green,orange,violet); {TYPe)
shades = blue..orange;
smallnumbers = 1..10;
string = packed array[1..limit] of char; {PACKEd)
class = record
name : string;
units : integer;

grade : char;
enc;

grades = array[smallnumbers] of class;
colorcount=array[1..10,'A"..*'Z'] of hues; {ARRAY)
classfile=file of class; {FlLe)(Of)>
pastels= set of shades; {SEt)
nextwcrd="sentence;
sentence = record {RECORd)

currentword : string;

comingword : nextword;

d

var high, low, counter : integer; {VAr)

first, last: char;
height, weight:real;
testing, debugging: boolean;
colors : hues;

shorta: smallnumbers;
name : string;

onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;

list, pointer : nextword;
count : integer;

label 1;

procedure verybusy (incoming:integer;
var outgoing:integer); forward; (PROCEDURe)

function capital(parameter : char):boolean; forward; {(FUNCTION){FORWARd}

procedure verybusy;

var local : integer;

in

readin(locsl);

outgoing := incoming * local;
end;

function capital;

begin
capital := parameter in ['A'..'2']; {n)
H

begin
writeln('Let''s start demonstrating things.');
readln(first, last);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if first <= last then
begin
write(first,' and ', last, * are');
writeln(' in alphabetical order.');

end;
if first = poundsign then {1f2{THEN)
high := (100 mod 90) {Mod)
else {ELSe)

high := 20;

for counter := 1 to limit do {FOrX(To
read(name [counter]);

case limit div 2 of {CASe)}(0f)(Div)
0,1,2,3,4,5:;
6, 7, 8, 9: writeln('within range.');

repeat {REPEAt)
read(shorts);
until (shorts=1) or (shorts=10); €Or){UNTIL)
while not eoln do (NOt){WHILe)
begin {BEGINn)
read(first);
writetn(first);
end;
with onecourse do {WITh){Do}
begin

name := 'study hall';
units := 5;
grade := 'p'

for count := 5 downto 1 do {DOWNTO)
write(' ');

testing :x capital(first);

verybugy(high, Low);

reset(source);

read(source, last);

rewrite(results);

write(results,last);

new(list);

list*.comingword := nil; {NIL)

pointer := list;

goto 1;

1: end. {END.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(***** Test Alphabetizing of all delarations w%#*%**)

program sotypical (input,output);

const Llimit = 10; {comment 3}
poundsign = *#'; (comment 2>
smorcita = 'ilana’; {comment 1)

type hues = (red,blue,green,orange,violet); {comment 5)
shades = blue..orange; {comment 9}
smallnumbers = 1..10; {comment 10}
string = packed array[1..limit) of char; {comment 112
class = record {comment 1)

name : string; {comment i)

units : integer; {comment 1c)

grade : char; {comment 1a}

end; {comment 1d)

grades = arrayismallnumbers] of class; {comment 4)
cotorcount=arrayf1..10,'A'.,'21] of hues; {comment 3}
classfile=file of class; {comment 2}
pastels= set of shades; {comment 7)
nextword="sentence; {conment 62
sentence = record {comment 8)
currentword : string; {comment 8b)

comingword : nextword; {comment 8a)

end; {comment 8c)

var high, low, counter : integer; {comment 8)

first, last: char; {comment 6)
height, weight:real; {comnent 7}
testing, debugging: boolean; {comment 15}
colors : hues; {comment 1)
shorts: smallnumbers; {comment 13}
name : string; {comment 10}
onecourse : class; {comment 11)
curriculum: grades; {comment 5)
colorsquares: colorcount; {comment 2}
schedule : classfile; {comment 12)
source, results : text; {comment 14}
crayons : pastels; {comment 4)
list, pointer : nextword; {comment 9)
count : integer; {comment 3)
label 1;

procedure verybusy (incoming: integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

procedure verybusy;

var local : integer;
in
readln(local);

outgoing := incoming * local;

function capital;

begin
capital := parameter in ['A'..'2'];

end;

begin
writeln('Let'!s start demonstrating things.');
readln(first, last);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if first <= last then
begin
write(first,' and ', last, ' are');
writeln(' in alphabetical order.');
end;

if first = poundsign then
high 2= (100 mod 90)
elge
high := 20;

for counter := 1 to limit do
read(name [counter]);

case limit div 2 of

0,1, 2,3,4,5:;

6, 7, 8, 9: writeln('within range.');
end;

repeat
readfchorts

)
until (shorts=1

') or (shorts=10);

while not eoln do
begin
read(first);
writeln(first);
end;

with onecourse do
begin
name := ‘study hall?;
units := 5;
grade := 'p'
end;

for count := 5 downto 1 do
write(* ');

testing := capital(first);

verybusy(high, low);

reset(source);

read(source, last);

reurite(results);

write(results, last);

new(list);

list~.comingword := nil;

pointer := list;

goto 1;

1: end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{***** Tegt Alphabetizing of Procedures and Functions wwiwd)

program sotypical (input,output);

const Llimit = 10;
poundsign = '#';

amorcita = 'ilana‘;

type hues = (red,blue,green,orange,violet);
shades = blue..orange;
smal lnumbers = 1..10;
string = packed array[1..limit] of char;
class = record
name : string;
units : integer;
grade : char;

end;
grades = array[smallnumbers) of class;
colorcount=array[1..10,'A’..7Z¢] of hues;
classfile=file of class;
pestels= set of shades;

nextword="sentence;
sentence = record
currentword : string;
cominguord @ nextword;
end;

var high, low, counter : integer;
first, last: char;
height, weight:real;
testing, debugging: boolean;
colors : hues;
shorts: smal lnumbers;
name : string;
onecourse : class;
curriculun: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;
list, pointer : nextword;
count : integer;

label 1;

procedure verybusy ¢ incoming: integer;
var outgoing:integer); forward;

function capital3(parameter : char): boolean; foruard;
function capital(parameter : char) : boolean; forward;

function capital2(parameter : char):boolean; forward;

function capital3; {-~- Should be third function)

begin
if parameter = ‘a' then
capital3 := true;
end;

function capital2; {-~~- Should be second function }

begin
if parameter = 'a‘ then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

capital2 := true;
end;
procedure verybusy;
var local : integer;
in
readin(local);

outgoing := incoming * local;

function capital; {--- Should be first function)

begin
capital := parameter in ['A'..'2'];
end;

begin
writeln('Let''s start demonstreting things.');
readln(first, last);
if first <= last then
begin
write(first,' and ?,last, * are');
writeln(' in alphabetical order.');

if first = poundsign then
high := (100 med 90)
else
high := 20;

for counter := 1 to limit do
read(name[counterl);

case limit div 2 of
0,1,2,3,4,5:;
6, 7, 8, 9: writeln('within range.');
end;
repeat
read(shorts);
until (shorts=1) or (shorts=10);

while not eoln do

begin
read(first);
writeln(first);

end;

with onecourse do

begin
name := 'study hall';
units := 5;
grade := 'p'

for count := 5 downto 1 do
write(! ');

testing := capital(first);

verybusy(high, low);

reset(source);

read(source, last);

rewrite(results);

write(results, last);

Reproduced with permission of the copyright owner. Further reproduction

prohibited without permission.

new(list);
Llist*.comingword := nil;
pointer := list;
goto 1;

1: end.

L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{*w*ar Tegt Output to & File wawew)

program sotypical (input,output); {PROGRAM>
const limit = 10; {CONSt)
poundsign = '#';

amorcita = 'ilana';

type hues = (red,blue,green,orange,violet); (TYPe)
shades = blue..orange;
smal lnumbers = 1..10;
string = packed array([1..limitl of char; {PACKEd)
class = record
name : string;
units : integer;
grade : char;

end;
grades = arraylsmallnumbers) of class;

colorcount=array[1..10,'A!..*2'] of hues; {ARRAY)
clagsfile=file of class; (FILe)(Of)
pastels= set of shades; {SEt)
nextword="sentence;
sentence = record {RECORd}

currentword : string;

comingword : nextword;

end;
var high, low, counter : integer; {VAr)

first, last: char;
height, weight:real;
testing, debugging: boolean;
colors : hues;

shorts: smallnumbers;
name : string;

onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;

list, pointer : nextword;
count : integer;

label 1;

procedure verybusy (incoming:integer;
var outgoing:integer); forward; {PROCEDURe)

function capital(parameter : char):boolean; forward; {(FUNCTIOn){FORWARd}

procedure verybusy;

var local : integer;

in
readin(local);
outgoing := incoming * local;

’

function capital;

begin
capital := parameter in ['A'..'2']; {In)
end;
begin
writeln('Let!'s start demonstrating things.');
readln(first,last);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if first <= last then
begin
write(first,' and *,last, ' are');
writeln(' in alphabetical order.');
end;

if first = poundsign then
high := (100 mod 90)
elsge
high := 20;

for counter := 1 to limit do
read{name [counter]);

it div 2 of
2,3,4,5:;
8, 9: writeln('within range.!);

e Lim
0, 1,
6, 7,
end;
repeat

read(shorts);
until (shorts=1) or (shorts=10);

while not eoln do

begin
read(first);
writeln(first);

end; :

with onecourse do

begin
name := 'study hall’;
units := 5;
grade := ‘p!

end;

for count := 5 downto 1 do
write(' ');
testing := capital(first);
verybusy(high, low);
reset(source);
read(source, last);
rewrite(results);
write(results,last);
new(list);
List~.comingword := nil;
pointer := list;
goto 1;

1: end.

C1f)CTHEN)
{MOd)
{ELSe)

{FOrX{To}

{CASeX{0fX{DIv)

{REPEAt)
{OrXUNTIL)

{NOt)(WHILe}
{BEGIn)

M1Th){Do)

{DOMWNTO)

{NIL)

{END.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner

(***** Tegt CONST, TYPE and VAR reserved words are on 1 line alone ¥***¥)

program sotypical (input,output);

const limit = 10;
poundsign = '#'; amorcita = ‘ilana‘;

type hues = (red,blue,green,orange,violet);
shades = blue. .orange;
smal lnumbers = 1..10;
string = packed arrayl1..limit] of char;
class = record
name : string;
units : integer;
grade, junk : char;

end;
grades = arraylsmallnumbers] of class;
colorcountzarray[1..10,'A!..'2']1 of hues;
clagsfile=file of class;
pastels= set of shades;

nextword="sentence;
sentence = record
currentword : string;
comingword : nextword;
end;

var high, low, counter : integer;
first, last: char;
height, weight:real;
testing, debugging: boolean;
colors = hues;
shorts: smallnumbers;
name : string;
onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;
list, pointer : nextword;
count,count2, count3, counté, count5,counté : integer;

{--- poundsign = ‘#';

{--- Grade, Junk)

amorcita

{--- High Low Counter)}
{--- First, Last }

{--- Hight, Weight)

{--- Testing, Debugging >

{--- Count,Count2,Count3,Count4,Count5,Counté }

tabel 1;

procedure verybusy (incoming:integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

procedure verybusy;

var local : integer;

in

readin(local);

outgoing := incoming * local;
end;

function capital;
begin

capital := parameter in ['A'..'2'];
end;

begin

‘ilana';)

10

. Further reproduction prohibited without permission.

writeln('Let''s start demonstrating things.');

readln(first,last);
if first <= last then
begin

write(first,* and ', last, ' are');
writeln(® in alphabetical order.');

if first = poundsign then

high := (100 mod 90)
else
high := 20;

for counter := 1 to limit do
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;
6, 7, 8, 9: writeln('within range.');
end;

repeat
read(shorts);
until (shorts=1) or (shorts=10);

while not eoln do
begin
read(first);
writeln(first);
end;

with onecourse do
begin
name := ‘study hall!;
units := 5;
grade := 'p!
end;

for count := 5 downto 1 do
write(* ');

testing := capital(first);

verybusy(high, tow);

reget(source);

read(source, last);

rewrite(results);

write(results,last);

new(list);

{ist*.comingword := nil;

pointer := list;

goto 1;

1: end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{***** Tegt Only one declaration per line in CONST, TYPE and VAR Section ****)

program sotypicsl (input,output);

const limit = 10;
poundsign = ‘#'; amorcita = 'ilana’; {--- poundsign = '#!; amorcita = 'ilana';}

type hues = (red,blue,green,orange,violet);
shades = blue..orange;
smal lnumbers = 1..10;
string = packed arrayll..limit] of char;
class = record
name : string;
units : integer;
grade, junk : char; {--- Grade, Junk)

end;
grades = array[smallnumbers] of class;
colorcount=array(1..10,'A',.*2'] of hues;
classfile=file of class;
pastels= set of shades;

nextword="sentence;
sentence = record
currentword : string;
comingword : nextword;
H
var high, low, counter : integer; {--- HRigh Low Counter }
first, last: char; {--- First, Last)
height, weight:real; --- Hight, Weight 2
testing, debugging: boolean; {--- Testing, Debugging)

colors : hues;

shorts: smal lnumbers;

name : string;

onecourse : class;

curriculum: grades;

colorsquares: colorcount;

schedule : classfile;

source, results : text;

crayons : pastels;

list, pointer : nextword;

count, count2, count3, count4,count5,counté : integer;
{--- Count,Count2,Count3,Count4,Count5,Count6 }

tabel 1;

procedure verybusy ¢ incoming: integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; foruward;

procedure verybusy;

var local : integer;

begin
readln(local);
outgoing := incoming * local;
H
function capital;
begin
capital := paiameter in ['A',.'2'];
end;

begin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

writeln('Let*'s start demonstrating things.');
readin(first, last);
if first <= last then
begin
write(first,' and ', last, * are');
writeln(' in alphabetical order.‘);
end;

if first = poundsign then
high := (100 mod 90)
else
high := 20;

for counter := 1 to limit do
read(name [counter]);

it div 2 of
2,3,4,5:;
8, 9: writeln('within range.');

repeat
read(shorts);
until (shorts=1) or (shorts=10);

while not eoln do
begin
read(first);
writeln(first);
end;

with onecourse do
begin
name := ‘study hall’;
units := 5;
grade := ‘'p'
end;

for count := 5 downto 1 do
write(' *');

testing := capital(first);

verybusyChigh, tow);

reset(source);

read(source, last);

rewrite(results);

write(results,last);

new(list);

list*.comingword := nil;

pointer := list;

goto 1;

1: end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(***= Tegt Begin and End construct. Indecation of Construct Test
program sotypical (input,output);

const Llimit = 10;

poundsign = '#!;

amorcita = 'ilana';

type hues = (red,blue,green,orange,violet);
shades = blue..orange;
smal lnumbers = 1..10;
string = packed array[1..limit) of char;
class = record
name : string;
units : integer;
grade, junk : char;

end; {Record)
grades = array([smallnumbers] of class;
colorcount=array[1..10,'A"..'2'] of hues;
cltassfile=file of class;
pastels= set of shades;
nextword="sentence;
sentence = record
currentword : string;
comingword : nextword;
end; {Record)

var high, low, counter : integer;
first, last: char;
height, weight:real;
testing, debugging: booleen;
colors : hues;
shorts: smallnumbers;
name : string;
onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;
list, pointer : nextword;
count, count2, count3, counté, count5,counté : integer;

label 1;

procedure verybusy (incoming:integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

procedure verybusy;

var local : integer;

in {Procedure)
readln(local);
outgoing := incoming * local;
end; {Procedure)
function capitsl;
begin {Function)
capital := parameter in ['A'..'2'];
end; {Function)
begin {Program}
writeln(‘Let''s start demonstrating things.');
readln(first,last);

Q.ﬁ'ﬁ)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

if first <= last then
begin
write(first,' and !, last, ' are');
writeln(' in alphabetical order.');

if first = poundsign then
high := (100 mod 90)
else
high := 20;

for counter := 1 to limit do
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;
6, 7, 8, 9: writeln('within range.');
end;

repeat
read(shorts);
until (shorts=1) or (shorts=10);

while not eoln do
begin
read(first);
writeln(first);
end;

with onecourse do
begin
name := ‘study hall’';
units := 5;
grade := 'p!
end;

for count := 5 downto 1 do
urite(® %);
testing := capital(first);
verybusyChigh, Low);
reset(source);
read(source,last);
rewrite(results);
write(results, last);
new(list);
list*.comingword := nil;
pointer := list;
goto 1;

1: end.

1)

(4837

{Case)

(While)

(Whiled

{Mith)

Mith)

{Program}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

{**** Test Begin and End construct. Name of Procedure/Function indecated *+**)
program sotypical (input,output);

const Llimit = 10;
poundsign = ‘'#';

amorcita = 'ilana‘;

type hues = (red,blue,green,orange,violet);
shades = blue..orange;
smal Lnumbers = 1..10;
string = packed array[1..limit] of char;
class = record
name : string;
units : integer;
grade, junk : char;

end;
grades = array[smallnumbers] of class;
cotorcount=array[1..10,'A'..'2'] of hues;
classfilezfile of class;
pastels= set of shades;

nextword=“gentence;
sentence = record
currentword : string;
comingword : nextword;
end;

var high, low, counter : integer;
first, last: char;
height, weight:real;
testing, debugging: boolean;
colors : hues;
shorts: smallnumbers;
name : string;
onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;
list, pointer : nextword;
count, count2,count3, counté,count5,counté : integer;

label 1;

procedure verybusy ¢ incoming:integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

procedure verybusy;
var local : integer;

in {VeryBusy}
readln(local);

outgoing := incoming * local;
end; {VeryBusy)

function capital;

begin {Capital)
capital := parameter in ['A'..'2'];

end; {Capital)

begin
writeln(tiet! s start demonstrating things.');
readln(first,last);

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

if first <= last then
begin
write(first,! and ', last, ' are');
writeln(* in alphabetical order.');
end;

if first = poundsign then
high := (100 mod 90)
else
high := 20;

for counter := 1 to limit do
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;
6, 7, 8, 9: writeln('within range.');
end;
repeat
read(shorts);
until (shorts=1) or (shorts=10);

while not eoln do

begin
read(first);
writeln(first);

end;

with onecourse do

begin
name := 'study hall’;
units := 5;
grade := 'p!

end;

for count := 5 downto 1 do
write(' ');
testing := capital(first);
verybusy(high, Llow);
reset(source);
read(source, last);
renrite(results);
write(results, last);
new(list);
list*.comingword := nil;
pointer := list;
goto 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

18

{**** Test Line Size no more than 120 Characters Long ****)

{**** The Line Below Should be broken up and shorter than 120 Charactes ****)

program sotypical (input,output); const Llimit = 10; poundsign = '#1; amorcita = 'ilana‘;
type hues = (red,btue,green,orange,violet); shades = blue..orange; smal lnumbers =
1..10; string = packed array{1..limit] of char;

class = record
name : string;
units : integer;
grade, junk : char;
end;
grades = array[smailnumbers] of class;
colorcount=arrayl[1..10,'A'..'2'] of hues;
classfilezfile of class;
pastels= set of shades;
nextword="sentence;
sentence = record
currentword : string;
comingword : nextword;
end;

var high, low, counter : integer;
first, last: char;
height, weight:real;
testing, debugging: boolean;
colors : hues;
shorts: smallnumbers;
name : string;
onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;
Llist, pointer : nextword;
(***** The Line below should be broken up and be less than 120 characters ¥**#*)

count, count2, count3, counté, count5,
count6, count?, count8, count9, count10 : integer;
label 1;

procedure verybusy (incoming: integer;
var outgoing:integer); forward;

function capital{parameter : char):boolean; forward;

orocedure verybusy;
var local : integer;

in {VeryBusy)
readln(local);

outgoing := incoming * local;
end; {VeryBusy}

function capital;

begin {Capital)
capital := parameter in ['A'..'2');
end; {Capital)

begin
writeln('Let''s start demonstrating things.');
readin(first, last);

(***** The following line should be broken up and be less than 120 characters in length Wew**)
if (first <= last) and (first < last) or (first > last) or (last > first) or (last <> first) and
(last > first) and (last > first) and (first > last) then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

begin
end;

if first <= last then
begin
write(first,' and ',last, ' are');
writeln(* in alphabetical order.');
end;

if first = poundsign then
high := (100 mod 90)
else
high := 20;

for counter := 1 to timit do
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;
(***»* The following line should be broken up and be less than 120 characters long ***¥*)

6' ’ 8'
9: writeln('within range.');

end;

repeat
read(shorts);

(***»* The following line should be broken up and be less than 120 characters long ¥****)
until (shorts=1) or (shorts=10) or (shorts=10) or (shorts=1) or (shorts=10) or (shorts=10) or
(shorts=1) or (shorts=10) or (shorts=10);

L Soleiaiaindainiedainioloboind This comment should be broken up into more than one piece and be under 120
characters long. It should also be compilabte after it has been broken up **#**)

while not eoln do
begin
read(first);
writeln(first);

with onecourse do

begin
name := ‘study hall';
units := 5;
grade := 'p'

end;

for count := 5 downto 1 do
write(' ');
testing := capital(first);
verybusy(high, low);
reset(source);
read(source, last);
reurite(resutts);
write(results, last);
new(list);
list*.comingword := nil;
pointer := {ist;
goto 1;

1: end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

{**** Test that the reserved words RECORD, BEGIN, and REPEAT are on lines by themselfs (excluding

comments) Whww)

program sotypical (input,output);

const limit = 10;
poundsign = ‘#';

amorcita = 'ilana';

type hues = (red,blue,green,orange,violet);
shades = blue..orange;
smallnumbers = 1..10;
string = packed array[1..limit] of char;
class = record name : string; {Record Only)
units : integer;
grade, junk : char;

end;
grades = array(smallnumbers] of ciass;
colorcount=array[1..10,'A"..'2'] of hues;
classfile=file of class;
pastels= set of shades;

nextword="sentence;
sentence = record currentword : string; {Record Only)
comingword : nextword;
end;

var high, low, counter : integer;
first, last: char;
height, weight:real;
testing, debugging: boolean;
colors : hues;
shorts: smal lnumbers;
name : string;
onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;
list, pointer : nextword;
count,count2, count3, counté, count5,counté : integer;

label 1;

procedure verybusy (incoming: integer;
var outgoing:integer); forward;

function capital(parameter : cher):boolean; forward;

procedure verybusy;
var local : integer;

begin readl:i(local); {Begin Only)
outgoing := incoming * local;

’
function capital;

begin capital := parameter in ['A'..'2']; {Begin Only}

’

begin writeln(‘Let''s start demonstrating things.'); {Begin Only)
readin(first,last);
if first <= last then
begin write(first,! and *,last, ' are'); {Begin Only)}
writeln(' in alphabetical order.');

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

end;
if first = poundsign then
high := (100 mod 90)
else

high := 20;

for counter := 1 tc limit do
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;
6, 7, 8, 9: writeln('within range.');
end;

repeat read(shorts); {Repeat Only)
until (shorts=1) or (shorts=10);

while not eoln do

begin read{first); LBegin Only}
writeln(first);

end;

with onecourse do

begin {Begin Only - Leave Comment}
name := 'study hall’';
wnies == 5
grade := 'p!

end;

for count := 5 downto 1 do
write(' ');
testing := capital(first);
verybusy(Chigh, Low);
reset(source);
read(source, last);
rewrite(results);
write(results, last);
new(list);
list*.comingword := nil;
pointer := list;
goto 1;

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(**** Tegt that the Ends, Untils, and Records are cn lines by themselves and ****)
{**** matched up in the same colum as the begins, repeats and record name ****)
{**** jn the record. ranw)

program sotypical (input,output);

const limit = 10;
poundsign = '#!;

amorcita = ‘ilana’;

type hues = (red,blue,green,orange,violet);
shades = blue..orange;
smallrumbers = 1..10;
string = packed array[l1..limit] of char;
class = record name : string;
units : integer;
grade, junk : char;
H {end should line up with class)
grades = array[smallnumbers] of class;
colorcount=array(1..10,'A'..'2'] of hues;
classfile=file of class;
pastels= set of shades;
nextword="sentence;
sentence = record currentword : string; {Record Only>
comingword : nextword;

03
2

var high, low, counter : integer;
first, last: char;
height, weight:real;
testing, debugging: boolean;
colors : hues;
shorts: smallnumbers;
name : string;
onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;
list, pointer : nextword;
count, count2, count3, count4, count5,counté : integer;

label 1;

procedure verybusy (incoming:integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

procedure verybusy;
var local : integer;
begin readln(local);

outgoing := incoming * local;
end; {end should be lined up with begin)
function capital;

begin capital := parameter in ['A'..'2'];

end; {end should be lined up with begin)
begin writeln('Let''s start demonstrating things.');
readln(first,last);
if first <= last then
begin write(first,' and *,last, ' are');

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

writeln(' in alphabetical order.');

end; {end should be lined up with begin}
if first = poundsign then

high := (100 mod 90)
else

high := 20;

for counter := 1 to limit do
read(name {counter]);

case limit div 2 of
0,1,2,3,4,5:;
6, 7, 8, 9: writeln('within range.');

.

{end should be lined up with case)

repeat read(shorts);
until (shorts=1) or (shorts=10); {end should be lined up with repeat)

while not eoln do
begin read(first);
writeln(first);
end; {end should be lined up with begin}

with onecourse do
begin
name :=
units := 5;
grade := 'p'; end; {end should be Lined up with begin}

for count := 5 downto 1 do
write(* ');

testing := capital(first);
verybusy(high, Low);
reset(source);
read(source, last);
resrite(results);
write(results, last);
nes(list);
list*.comingword := nil;
pointer := list;
goto 1;

1: end.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{**** Tegt that there are 2 blank lines between procedures *#**+*)

{**** This should only be two lines w#*#%)

program sotypical (input,output);

const Llimit = 10;
poundsign = '#';

amorcita = tilana‘;

type hues = (red,blue,green,orange,violet);
shades = blue..orange;
smal lnumbers = 1..10;
string = packed array(1..limit] of char;
class = record name : string;
units : integer;
grade, junk : char;

end;

grades = arraylsmallnumbers) of class;
colorcount=array[1..10,'A'..'2'] of hues;
classfile=file of class;
pastels= set of shades;
nextword="sentence;
sentence = record currentword : string;

em’t:omingmord : nextword;

var high, low, counter : integer;
first, last: char;
height, weight:real;
testing, debugging: boolean;
colors : hues;
ghorts: smallnumbers;
name : string;
onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;
tist, pointer : nextword;
count,count2, count3, counté4, countS,counté : integer;

label 1;

procedure verybusy (incoming:integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

(**** There should only be two lines here ****)

procedure verybusy;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

var local : integer;

begin readln(local);

outgoing := incoming * local;
end; {** There should be two blank lines under this line **)
function capital;

begin capital := parameter in ['A'..'2'];
end;

) {** There should be one more blank line under this line **)
begin writeln(’Let'’s start demonstrating things.');

readin(first, last);
if first <= last then
begin write(first,* and *,last, ' are');

writeln(' in alphabetical order.');

(]

if first = poundsign then
high 2= (100 mod 90)
else
high := 20;

for counter := 1 to limit do
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;
6, 7, 8, 9: writeln('within range.');
end;

repeat read(shorts);
until (shorts=1) or (shorts=10);

while not eoin do

begin read(first); {Begin Only)
writeln(first);
end;

with onecourse do
begin {Begin Only - Leave Comment)

name := 'study hall';
units = 5;
grade := 'p!

end;

for count := 5 downto 1 do
write(* ');

testing := capital(first);

verybusy(high, tow);

reset{source);

read(source, Last);

rewrite(results);

write(results, last);

new(list);

list*.comingword := nil;

pointer := list;

goto 1;

1: end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{**** Tegt that there is at least one space before and after each “:=", W:% and M=it *¥*¥)

program sotypical (input,output);

const Llimit=10;
poundsign="#';

amorcita='ilana’;

type hues=(red,blue,green,orange,violet);
shades=blue. .orange;
smal {numbers=1..10;
string=packed arrayll..limit] of char;

class=record name:string; €
units:integer;)
grade, junk:char;)

m-

’

grades=array[smallnumbers] of class;
colorcount=arrayi1..10,'A'..'2'] of hues;
classfile=file of class;
pastels= set of shades;
nextword=“sentence;
sentence=record currentword:string;

comingword :nextword;

end;
var high, low, counter:integer;)
first, last:char;)
height, weight:real;)
testing, debugging:boolean; {3
colors:hues;)
shorts:smal Lnumbers; €
name:string; €}
onecoursesclass; (€3]
curriculum:grades; L6
colorsquares:colorcount;)
schedule:classfile;)
source, results:text; (43}
crayons:pastels;)
list, pointer:nextword; (43}
count,count2, count3, counté, count5, counté: integer; €z

label 1;
procedure veryousy (incoming:integer; {:)
var outgoing:integer); forward; €

function capital(parameter:char):boolean; forward; >
procedure verybusy;
var local:integer;)
begin readln(local);

outgoing:=incoming * local; {:=)
end;

function capital;

begi capital:=parameter in ['A'..'2']; {:=
end;
begin writeln('Let''s start demonstrating things.');
readln(first, last);
if first <= (ast then
begin write(first,' and *',last, ' are');
writetn(' in alphabetical order.');
end;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if first=pounrdsign then

high:=(100 mod 90) :=)
else
high:=20; :=)
:=)
for counter:=1 to limit do {:=)
read(name [counter]);

case limit div 2 of

0, 1, 2, 3, 4, 5:;

6, 7, 8, 9:uriteln('within range.');
end;

repeat read(shorts);
until (shorts=1) or (shorts=10);

while not eoln do
begin read(first);
writeln(first);

’

with onecourse do
begin
name:=!study hall’; {:=)
units:=5; €:=3
grade:='p’ {:=)

for count:=5 downto 1 do {:=3
write(' ');

testing:=capital(first); =3

verybusy(high, low);

reset(source);

read(source, last);

rewrite(results);

write(results, last);

new(list);

tist~.comingword:=nil;

pointer:=list; :=)

goto 1;

1:end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

{**** Tegt Only One Executable Statement per line ¥****)

program sotypical (input,output);

const Llimit = 10;
poundsign = '#';

amorcita = 'ilana‘;

type hues = (red,blue,green,orange,violet);
shades = blue..orange;
smal lnumbers = 1..10;
string = packed array[1..limit] of char;
class = record name : string;
units : integer;
grade, junk : char;

(]

grades = arrayl[smal lnumbers] of class;
colorcount=array{1..10,'A'..?2'] of hues;
classfile=file of class;
pastels= set of shades;
nextword="sentence;
sentence = record currentword : string;

comingword : nextword;

’

var high, low, counter : integer;
first, last: char;
height, weight:real;
testing, debugging: boolean;
colors : hues;
shorts: smal lnumbers;
name : string;
onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;
list, pointer : nextword;
count, count2, count3, count4,count5,counté : integer;

{abel 1;

procedure verybusy (incoming:integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

procedure verybusy;

var local : integer;

begin readln(local); outgoing := incoming * local; {Line Should Be broke up}
end;

’
function capital;

begin
capital := parameter in ['A'..'2'];
end;

{*** The line below should be broke up into multiple lines ®****)

begin writeln('lLet''s start demonstrating things.'); readln(first,last); if first <= last then
begin write(first,' and *, last, ! are'); writeln(' in alphabetical order.');
end;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

if first = poundsign then
high := (100 mod 90)
elge
high := 20;

{*** The line below should be broke up into multiple lines ***)
for counter := 1 to limit do read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;
é, 7, 8, 9: writeln('within range.');
end;

repeat read(shorts);
until (shorts=1) or (shorts=10);

while not eoln do

{**** The following line should be broken up ****)
begin read(first); writeln(first);
end;

with onecourse do
begin
{ The follwing line should be broken up)
name := ‘study hall'; units := 5; grade := ‘p!
end; :

for count := 5 downto 1 do

{*** The following Line should be broke up ***)
write(' '); testing := capital(first); verybusy(high, low); reset(source);

read(source, last);

rewrite(results); write(results,last); new(list); list*.comingword := nil; pointer := list;

{**** This Line should have been broke up ***)

goto 1;

1: end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(e*ev Tegt indentation ##w#¥)
program sotypical (input,output);

const Llimit = 10;
poundsign = '#';

amorcita = 'ilana’;

type hues = (red,blue,green,orange,violet);
shades = blue..orange;

smal lnumbers = 1,.10;

string = packed array[1..limitl of char;
class = record

name : string;

units : integer;
grade : char;
end;

grades = array(smallrumbers] of class;
colorcount=array[1..10,'A'..12'] of hues;
classfile=file of class;

pastels= set of shades;
nextword="sentence;

sentence = record

currentword : string;

comingword : nextword;

end;

var high, low, counter : integer;
first, last: char;
height, weight:reatl;
testing, debugging: boolean;
colors : hues;
shorts: smallnumbers;
name : string;
onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;
list, pointer : nextword;
count : integer;

label 1;

procedure verybusy (incoming: integer;
var outgoing:integer); forward;

function capital{parameter : char):boolean; forward;

procedure verybusy;
var local : integer;

in
readln(local);
outgoing := incoming * local;
end;

function capital;

begin

capital := parameter in ['A'..'2'];
H

begin

writeln('Let''s start demonstrating things.');
readln(first, last);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

if first <= last then

begin

write(first,' and ', last, ' are!);
writeln(' in alphabetical order.');
end;

if first = poundsign then
high := (100 mod 90)

else

high := 20;

for counter := 1 to limit do
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;

6, 7, 8, 9: writeln('within range.');
end;

repeat

read(shorts);

until (shorts=1) or (shorts=10);

while not eoln do

begin

read(first);
writeln(first);

end;

With onecourse do
begin

name := ‘study hall’;
units := 5;

grade := 'p!

end;

for count := 5 downto 1 do
write(* *);
testing := capital(first);
verybusy(high, low);
reset(source);
read(source, last);
rewrite(results);
write(results, last);
new({list);
list*.comingword := nil;
pointer := list;
goto 1;
1: end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{*w*=x*x Tegt that declarations within an indented body should be aligned. ****¥)
{***** For example, line up all variable declarations indented under a *****)
{***** VAR gtatement. Also line up all the statements indented under an W¥***)
(***+** F-THEN-ELSE statement. wawan)

program sotypical (input,output);

const limit = 10;
poundsign = '#';

amorcita = 'ilana';

type hues = (red,blue,green,orange,violet);
shades = blue..orange;

smal lnumbers = 1..10;

string = packed array[1..limit] of char;
class = record

name : string;

units : integer;
grade : char;
end;

grades = arrayismalinumbers] of class;
colorcount=array[1..10,'A'..'2'] of hues;
classfile=file of class;

pastels= set of shades;
nextword="sentence;

sentence = record

currentword : string;

comingword : nextword;

end;

var high, low, counter : integer;
first, last: char;

height, weight:real;
testing, debugging: boolean;
colors : hues;

shorts: smallnumbers;

name : string;

onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;

list, pointer : nextword;
count : integer;

label 1;

procedure verybusy (incoming: integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

procedure verybusy;
var local : integer;

begin

readln(local);

outgoing := incoming * local;
end;

function capital;

begin

capital := parameter in ['A'..'2'];
end;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

begin

writeln('let''s start demonstrating things.');
readin(first, last);

if first <« last then

begin

write(first,' and ', last, ' are');

writeln(' in alphabetical order.');

if first = poundsign then
high := (100 mod 90)
else

high := 20;

for counter := 1 to limit do
read(name [counter]);

cagse limit div 2 of
0,1,2,3,4,5:;

6, 7, 8, 9: writeln('within range.');
end;

repeat

read(shorts);

until (shorts=1) or (shorts=10);

while not eoln do

begin

read(first);
writeln(first);

end;

with onecourse do
bagin

name := ‘study hall';
units := 5;

grade := 'p!

end;

for count := 5 downto 1 do
write(' !);

testing := capital(first);
verybugychigh, low);
reset(source);
read(source, last);
rewrite(results);
write{results,last);
nes(list);
list”.comingword := nil;
pointer := list;

goto 1;

1: end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{**** The PROGRAM statement, CONST, TYPE, VAR keywords, BEGIN, and END ****)

{**** of the main program should be aligned at the left margin. babadidod)
program sotypical (input,output); {PROGRAM)
const Llimit = 10; {CONST)
poundsign = '#¢;

smorcita = 'ilana';

type hues = (red,blue,green,orange,violet); {TYPE)
shades = blue..orange;

smallnumbers = 1..10;

string = packed array[1..limit]l of char;
class = record

name : string;

units : integer;

grade : char;

end;

grades = array([smallnumbers] of class;
colorcount=arrayf1..10,'A'..'2'] of hues;
classfilezfile of class;

pastels= set of shades;
nextword="sentence;

sentence = record

currentword : string;

comingword : nextword;

end;

var high, low, counter : integer; {VAR)
first, last: char;

height, weight:real;
testing, debugging: boolean;
colors : hues;

shorts: smallnumbers;

neme : string;

onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedute : classfile;
source, results : text;
crayons : pastels;

list, pointer : nextword;
count : integer;

label 1;

procedure verybusy (incoming: integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; foruar&;

procedure verybusy;

var local : integer;

begin

readln(local);

outgoing := incoming * local;
end;

function capital;

begin

capital := parameter in ['A'..'2'];
end;

begin {BEGIN)
writeln('Let*’s start demonstrating things.');

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

readln{first, last);
if first <= last then
begin

write(first,* and ¢, last, ! are');
writeln(! in alphabetical order.');
end;

if first = poundsign then
high := (100 mod 90)
else

high := 20;

for counter := 1 to limit do
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;

6, 7, 8, 9: writeln('within range.');
end;

repeat

read(shorts);

until (shorts=1) or (shorts=10);

while not eoln do

begin

read(first);
writeln(first);

end;

with onecourse do
begin

name := 'study hall';
units := 5;

grade := 'p'

end;

for count := 5 downto 1 do
write(' ');

testing := capital(first);
verybusy(high, low);
reset(source);
read(source, last);
rewrite(results);
write(results, last);
new(list);
list*.comingword := nil;
pointer := list;

goto 1;

1: end.

{END)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

(x*xw** The decleatation keywords (CONST,TYPE,VAR), and BEGIN-END *w#wx%)
(***** plocks of procedure and functions should be aligned with *wws*)
{***** the procedure headings. Procedures/functions that are fubadaiabed]
{r**** physically within another procedure/function (not the main *#*#i+}
{***** program) should be indented and any declaration keywords ¥**++}
{****x* gligned with the appropriate headings. RhREE)

program sotypical (input,output);

const Llimit = 10;
poundsign = '#!;

amorcita = 'ilana';

type hues = (red,blue,green,orange,violet);
shades = blue..orange;

smal lnumbers = 1..10;

string = packed array[1..timit]l of char;
class = record

name : string;

units : integer;
grade = char;
end;

grades = array[smallnumbers] of class;
colorcount=array[1..10,'A'..'2'] of hues;
classfile=file of class;

pastels= set of shades;
nextword="sentence;

sentence = record

currentword : string;

comingword : nextword;

end;

var high, low, counter : integer;
first, last: char;

height, weight:real;
testing, debugging: boolean;
colors : hues;

shorts: smallnumbers;

name : string;

onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;

list, pointer : nextword;
count : integer;

label 1;

procedure verybusy (incoming: integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

procedure verybusy; {--- Should be indented ---}

var local : integer; {--- Should be aligned with proc)
begin {--- Should be aligned with proc)
readln(local); {--- Should be indented from proc)

outgoing := incoming * locatl;

function capital; {--- Should be indented ---)

begin {--- Should be aligned with proc ---}
capital := parameter in ['A'..'2']1; (--- Should be indented from proc }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end;

begin

writeln('Let''s start demonstrating things.');
readln(first, last);

if first <= last then

begin

write(first,' and ', last, ' are’);

writeln(' in alphabetical order.');

end;

if first = poundsign then
high := (100 mod 90)

else

high := 20;

for counter := 1 to limit de
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;

6, 7, 8, 9: yriteln(*within range.');
end;

repeat
read(shorts);
untit (shorts=1) or (shorts=10);

while not eoln do
begin
read(first);
writeln(first);
end;

with onecourse do
begin

name := ‘study hall?;
units := 5;

grade := 'p!

end;

for count := 5 downto 1 do
write(' ');

testing := capital(first);
verybusy(high, low);
reset(source);
read(source, last);
rewrite(results);
write(results, last);
new(list);
list*.comingword := nil;
pointer := list;

goto 1;

1: end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{*»*** Test that declarations within an indented body should be aligned. ##w##)
{***** For example, line up all variable declarations inderited under a **#%*)
{***** VAR gtatement. Also line up all the statements indented under an **##*+)
(***** [F-THEN-ELSE statement. ERRRNY

program sotypical (input,output);

const limit = 10;
poundsign = '#!;

amorcita = 'ilana‘;

type hues = (red,blue,green,orange,violet);
shades = blue..orange;

smallnumbers = 1..10;

string = packed array[1..limit] of char;
class = record

name : string;

units : integer;
grade : char;
erd;

grades = arrayl[smallnumbers] of class;
colorcount=array[1..10,'A"..*2'] of hues;
classfite=file of class;

pastels= set of shades;
nextword="gentence;

sentence = record

currentword : string;

comingword : nextword;

end;

var high, Low, counter : integer;
first, last: char;

height, weight:real;
testing, debugging: boolean;
colors : hues;

shorts: smal lnumbers;

name : string;

onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;

list, pointer : nextword;
count : integer;

label 1;

procedure verybusy (incoming: integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

procedure verybusy;

var local : integer;

begin

readin(local);

outgoing := incoming * local;
end;

function cepital;

begin
capital := parameter in ['A‘'..'2'];
end;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

begin

writeln('Let’'s start demonstrating things.');
readln(first, last);

if first <= last then

begin

write(first,' and ', last, ' are');

writeln(' in alphabetical order.');

end;

if first = poundsign then
high := (100 mod 90)
else

high := 20;

for counter := 1 to limit do
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;

6, 7, 8, 9: writeln('within range.');
end;

repeat

read(shorts);

until (shorts=1) or (shorts=10);

while not eoln do

begin

read(first);
writeln(first);

end;

with onecourse do
begin

name := ‘study hallt;
units := 5;

grade = 'p!

end;

for count := 5 downto 1 do
write(' ');

testing := capital(first);
verybusy(high, low);
reset(source);
read(source, last);
rewrite(results);
write(results, last);
new(list);
list“.comingword := nil;
pointer := list;

goto 1;

1: end.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a**2* Tegt that declarations within an indented body should be aligned. fdadabaiod
(**2** Tegt that the body of all IF-THEN, IF-THEN-ELSE, WHILE, WITH, and *hARAY
(*r**% CASE gtatements should be indented from their corresponding keywords. w###¥*)

program sotypical (input,output);

const Llimit = 10;
poundsign = '#!;

amorcita = 'ilana’;

type hues = (red,blue,green,orange,violet);
shades = blue..orange;

smal lnumbers = 1..10;

string = packed arrayl1..limit]l of char;
class = record {--- This should be indented)
name : string;

units : integer;

grade : char;

end;

grades = arrayl[smallnumbers] of class;
colorcount=array[1..10,'A'..'2'] of hues;
classfile=file of class;

pastels= set of shades;

nextword="sentence;

sentence = record

currentword : string;

comingsword : nextword;

end;

var. high, low, counter : integer;
first, last: char;

height, weight:real;
testing, debugging: boolean;
colors : hues;

shorts: smal lnumbers;

name : string;

onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;

list, pointer : nextword;
count : integer;

tabel 1;

procedure verybusy (incoming:integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

procedure verybusy;

var local : integer;

begin

readin(local);

outgoing := incoming * local;
end;

function capital;

begin

capital := parameter in ['A'..'2']);
end;

begin

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

writeln('Let''s start demonstrating things.*);

readin(first,last);

if first <= last then

begin {--- This should be indented)
write(first,' and ',last, ' are'); {--- This should be indented)
writeln(' in alphabetical order.');

end;

if first = poundsign then

high := (100 mod 90) €--- This should be indented)
else

high := 20; {--- This should be indented 2

for counter := 1 to limit do
read(name [counter]); {--- This should be indented)

case limit div 2 of
0,1,2,3,4,5:;

6, 7, 8, 9: writeln('within range.');
end;

repeat
read(shorts);
until (shorts=1) or (shorts=10);

while not eoln do

begin {--- This should be indented)}
read(first); {--- This should be indented)
writeln(first);

end;

with onecourse do
begin {--- This should be indented)
‘study hall®; {--- This should be indetned)

4

for count := 5 downto 1 do
write('); {--- This should be indented)
testing := capital(first);
verybusy(high, low);
reset(source);
read(source, last);
rewrite(results);
write(results, last);
new(list);
list*.comingword := nil;
pointer := list;

goto 1;

1: end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{**** 1f a body of 8 FOR, IF-THEN, I1F-THEN-ELSE, WHILE, or WITH RAARE)
{**** gtatement is a compound statement (more than one command), FRRAN)
{**** then the BEGIN should follow the keyword on the next Line and **#**)

{**** the END should be on a line by itself aligned with the hdedniiod 1
{**** corresponding BEGIN. When a REPEAT loop appears on more hdadabdod 3
{**** than one line, the UNTIL ic =!igned with the REPEAT. badededaled 4

program sotypical (input,output);

const limit = 10;
poundsign = '#!;

amorcita = ‘jlana‘;

type hues = (red,blue,green,orange,violet);
shades = blue..orange;

smal tnumbers = 1..10;

string = packed array(t..limit] of char;
class = record

name : string;

units : integer;
grade : char;
end;

(]
grades = arrayl[smallnumbers] of class;
colorcount=array(1..10,'A*..'2'] of hues;
classfile=file of class;
pastels= set of shades;
nextword="sentence;
sentence = record
currentword : string;
comingword : nextword;
end;

var high, low, counter : integer;
first, last: char;

height, weight:real;
testing, debugging: boolean;
colors : hues;

shorts: smat lnumbers;

name : string;

onecourse : class;
curriculum: grades;
colorsquares: colorcount;
schedule : classfile;
source, results : text;
crayons : pastels;

list, pointer : nextword;
count : integer;

label 1;

procedure verybusy (incoming:integer;
var outgoing:integer); forward;

function capital(parameter : char):boolean; forward;

procedure verybusy;

var local : integer;

begin

readin(local);

outgoing := incoming * local;
end;

function capital;

begin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

capital := parameter in ['A'..'Z'];

end;

begin

writeln(’Let''s start demonstrating things.');

readln(first,last);

if first <= last then

begin {--- This should be indented }
write(first,' and ', last, ' are'); {--- This should be indented }
writeln(' in alphabetical order.');

end;

if first = poundsign then
high := (100 mod 90)
else

high := 20;

for counter := 1 to limit do
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;

6, 7, 8, 9: writeln(*within range.');
end;

repeat
read(shorts); {--- This should be indented)
until (shorts=1) or (shorts=10); {--- This should be lined up with the Repeat ?

while not eoln do

begin {--- This should be indented)
read(first); {--- This should be indented 3}
writeln(first);

end;

with onecourse do
begin {--- This should be indented)
'study hall?; {--- This should be indetned)

for count := 5 downto 1 do
write(* *);

testing := capital(first);
verybusy(high, tow);
reset(source);
read(source, last);
rewrite(results);
write(results,last);
new(list);
list*.comingword := nil;
pointer := list;

goto 1;

1: end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(**** 1f g body of a FOR, 1F-THEN, IF-THEN-ELSE, WHILE, or WITH hedabaialed
{**** statement is a compound statement (more than one command), hadedaioed
{**** then the BEGIN should follow the keyword on the next line and ##*#*)

{**** the END should be on a line by itself aligned with the badadabeded]
{**** corresponding BEGIN. When a REPEAT loop appears on more badedaiabed
{**** than one line, the UNTIL is aligned with the REPEAT. RRARR)

program sotypical (input,output);
{***** These Lines Should all be commented **¥**)
const Llimit = 10;(--- Comment 1}
poundsign = '#'; {--- Comment 2)
amorcita = 'ilana'; {(--- Comment 3)

{Comment)
type hues = (red,blue,green,orange,violet);
{Comment)
shades = blue. .orange;
{Comment)
smallnumbers = 1..10;
{Comment)
string = packed array(1..limit] of char;
{Corment)
class = record
{Comment)
name : string;
{Comment)
units : integer;
{Comment}
grade : char;
end;
{Comment)

grades = array[smatlnumbers] of class; (Comment}
colorcount=array[1..10,'A'..'2'] of hues; {(Comment)
classfile=file of class; {Comment)

pastels= set of shades; {Comment)
nextword="sentence; {(Comment)

sentence = record {Comment)

currentword : string; {(Comment)

comingword : nextword; {Comment)

end; {(Comment)

var high, low, counter : integer; {Comment)
first, last: char; (Comment)

height, weight:real; {Comment)
testing, debugging: boolean; {(Comment)
colors : hues; {(Comment)

shorts: smallnumbers; (Comment)

name : string; {(Comment)

onecourse : class; {Comment)
curriculum: grades; (Comment)
colorsquares: colorcount; {Comment)
schedule : classfile; (Comment)
source, results : text; {Comment)
crayons : pastels; (Comment)

list, pointer : nextword; (Comment)
count : integer; {Comment)}

label 1;

procedure verybusy (incoming: integer;
var outgoing:integer); forward; {Comment)

function capital(parameter : char):boolean; forward; {Comment}

procedure verybusy;

var local : integer; {Comment)}
begin

readin(local);

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outgoing := incoming * local;
end;

function capital;

begin
capital := parameter in ['A'..'2'];
H

begin

writeln('Let''s start demonstrating things.');

readln(first, last);

if first <= last then

begin (--- This should be indented)
write(first,' and ',last, ' are'); {--- This should be indented 2
writeln(' in alphabetical order.');

end;

if first = poundsign then
high := (100 mod 90)

else

high := 20;

for counter := 1 to Llimit do
read(name [counter]);

case limit div 2 of
0,1,2,3,4,5:;

6, 7, 8, 9: writeln(*within range.');
end;

repeat
read(shorts); {--- This should be indented)
until (shorts=1) or (shorts=10); {--- This should be lined up with the Repeat)

while not eoln do

begin {--~ This should be indented)
read(first); {--- This should be indented >
writeln(first);

end;

with onecourse do

begin {--- This should be indented)
nome := 'study hall®; {--- This should be indetned)
units := 5;

grade :
end;

for count := 5 downto 1 do

write(’ '); (Comment)

testing := capital(first); {(Comment)
verybusy(high, low); {Comment)
reset(source); {(Comment)
read(source, last); {(Comment)
rewrite(results); {Comment)
write(results,last); (Comment)
new(list); (Comment)
list*.comingword := nil; (Comment)}
pointer := list; {(Comment)

goto 1; {(Comment)

1: end. {Comment)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX F

SPSSX DISCRIMINANT ANALYSIS CODE AND RELEVANT RESULTS
ALL, TEAMS FOR BOTH GROUPS
ALL VARIABLES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May=-90 SPSS~X RELEASE 3.1 FOR VAX/WS
Page 1
16:32:20 STUDENT ACCESS NEIWORK SPSS-X on UCBEH:: ws V5.3

VAX STUDENRT ACCESS HETWORK SPSS-X License Humber 19638
This software is functicnal through June 30, 1990.
Try the new SPSS-X Release 3.0 and 3.1 features:
* Interactive SPSS-X command execution * The new RANK procedure
* Online,VMS-like Belp -

* Nonlinear Regression * REPORT and TABLES
* Time Series and Forecasting (TRENDS) -

* Macro Facility .

See SPSS-X User’'s Guide, Third Edition, for wore information on these features.

0 DATA LIST FILE='ALLDATA.DAT' RECORDS=3

0 /11D 1-2 GROUP 1 REC 4 CLARITY 6-13 EFFORT 15-22 LOOPS 24-28 SELECTS 30-34

0 n1 36-40 n2 42-46 CALLS 48-52 DATADIFF 54-58 DIFFICUL 60-65 BLOCKS 67-71

0 /2 MODULES 12-16 LOC 18-22 CMMNTS 24-28 LEMGTHN 30-34 ESTN 36-40

0 IMPLEVEL 42-46 VOLUME 48-52 VOCAB 54-58

0 /3 GLOGON 12-16 GCOMPL 18-22 GLINKS 24-28 GRUNS 30-34 GTIME 36-40 TOTTIME 42-46
0 TOTDES 48-52 TOTCOD 54-58

NOWVISUVLIN -

This command will read 3 records from SYSSSTAFF: [FACULTY.GRANGER.STATSIALLDATA.DAT;

Preceding task required .28 seconds CPU time; .37 seconds elapsed.

9 0 DISCRIMINANT GROUPS=GROUP(1,2)/

10 0 VARIABLES = CLARITY TO TOTCOD /

Mo ANALYSIS = CLARITY TO TOTCOD /

12 0 METHOD = WILKS / PIN = .05 /

13 0 CLASSIFY = POOLED /

14 0 STATISTICS = MEAN STDDEV CORR FPAIR UNIVF BOXM RAW COEFF TABLE /
15 0 PLOT = ALL

There are 12,008,608 bytes of memory available.

This DISCRIMINANT analysis requires 23408 bytes of memory.

EXHIBIT F-1

SPSSX - DISCRIMINANT ANALYSIS COMMANDS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GROUP MEANS

GROUP CLARITY EFFORT LOOPS SELECTS N1 N2
CALLS DATADIFF '
1 2078588.57143 6401098.85714 61.57143 181.85714 34.14286 181.28571
69.14286 10.63429
2 1413530.00000 3848281.75000 56.50000 112.00000 33.25000 165.50000
45.50000 7.92750
TOTAL 1836812.72727 5472801.72727 $9.72727 156.45455 33.81818 175.54545
60.54545 9.65000
GROUP DIFFIQR BLOCKS MODULES Loc CMHNTS LENGTHN
ESTN IMPLEVEL
1 180.47429 311.85714 34.00000 1751.00000 188.14286 4655.71429
1567.71429 0.00607
2 132.29250 211.75000 25.75000 1437.50000 221.00000 3694.75000
1398.25000 0.00803
TOTAL 162.95366 275.45455 31.00000 1637.00000 200.9090 4306.27273
1506.09091 0.00678
GROUP VOLUME VOCAB GLOGON GCOMPL GLINKS GRUNS
GTIME TOTTIME

1 36553.714629 215.42857 220.28571 3912.71429 1057.85714 1023.14286
210.85714 204.42857

2 28439.25000 198.75000 165.00000 1652.50000 559.75000 536.25000
164 .00000 73.50000
TOTAL 335603.00000 209.36364 200.18182 3090.31818 876.72727 846.09091
193.81818 156.81818
GROUP TOTDES ToTCOD
1 81.71429 122.71429
2 $0.00000 23.50000
TOTAL 70.18182 86.63636
EXHIBIT F-2

GROUP MEANS - ALL VARIABLES - ALL GROUPS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WILXS® LAMBDA (U-STATISTIC) AND UNIVARIATE F-RATIO

WIT8 1 AND 9 DEGREES OF FREEDOM
VARIABLE WILKS® LAMBDA F SIGNIFICAKE
CLARITY 0.92103 0.7717 0.402s
EFFORT 0.83289 1.806 0.2119
LOQPS 0.99582 0.3781E-01 0.8501
SELECTS 0.83251 .81 0.2113
n 0.94306 0.5434 0.4798
.4 0.99138 0.78252-01 0.7860
CALLS 0.90893 0.9017 0.371
DATADIFY 0.84468 1,655 0.2304
DIFFICUL 0.81052 2.104 0.1809
N 3LOCKS 0.87728 1.239 0.29%0%
MODULES 0.85167° 1.567 0.4462%
Loc 0.89442 1.062 0.329
CMMNTS 0.98567 0.1308 0.759
LENGTHN 0.93813 0.5935 0.4608
ESTN 0.98823 0.1072 0.7508
IMPLEVEL 0.81586 2.031 0.1878
VOLUME 0.94836 0.4900 0.5016
VOCAB 0.99060 0.85406-01 0.7767
GLOGON 0.74897 3.016 0.1164
GCOMPL 0.65827 4.672 0.0589
GLINKS 0.52503 8.142 0.0190
GRUNS 0.51551 8.458 0.0174
GTIME 0.58576 6.365 0.0326
TOTTIME 0.74003 3.1682 0.1091
TOTDES 0.78162 2.515 0.1473
TCTCOD 0.78897 2.407 8.1552
EXHIBIT F-3

STATISTICS FOR ALL VARIABLES - ALL GROUPS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-Mgy=-90 SPSS-X RELEASE 3.1 FOR VAX/WMS
Page 20
16:32:29 STUDENY ACCESS NETWORK SPSS-X on UCBESH:: s V5.3

Preceding task required 4.56 secoads CPU time; 6.35 seconds elapsed.

16 0 DISCRIMINANT GROUPS=GROUP(1.2)/

17 0 VARIABLES = CLARITY IO blocks,loc /

18 0 ARALYSIS = CLARITY TO blocks,loc /

19 0 METHOD = WIIKS / PIN = .05 /

20 0 CLASSIFY = POQLED /

21 0 STATISTICS = MEAN SIDDEV CORR FPAIR. UNIVF BQXM RAW COEFF TABLE /
2 0 PLOT = ALL

There are 12,008,464 bytes of msamory available.

This DISCRIMINANT analysis requirss 4688 bytes of memory.

WILKS® LAMBDA (U-SIATISTIC) ARD UNIVARIATE F-RATIO

WITE 1 AMD 9 OF FREEDOM
VARIABLY WILKS® LAMEDA b4 SIGNTFICANCE
CLARITY 0.92103 0.7717 0.4025
EFFCRT 0,83289 1.806 0.2119
LooPS 0.99582 0.3781E-01 0.8501
SELECTS 0.83251 1.811 0.2113
H 0.94306 0.5434 0.4798
2 0.99138 0.78252-01 0.7860
CALLS 0.90893 0.9017 0.3671
DATADIFF 0.84463 1.633 0.2304
DIFFICUL 0.81052 2.104 0.120¢9
BLOCXS 0.8772¢ 1.259 0.2909
woc 0.89442 1.062 0.3296

EXHIBIT F-4

SPSSX - DISCRIMINANT ANALYSIS COMMANDS - COMPLEXITY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-Mgy=90 SPSS-X RELEASE 3.1 FOR VAX/WS
Page 25
16:32:30 STUDENT ACCESS MEIWORK SPSS-X on UCBEH:: s vs5.3

Preceding task required .54 seconds CPU time; 1.32 seconds elapsed.

23 0 DISCRIMIEANT GROUPS=GROUP(1,2)/

26 0 VARIABLES = modules to vocab /

25 0 ANALYSIS = modules 10 vocab /

26 0 METBOD = WILXS / PIN = .05 /

27 © CLASSIFY = POCLED /

28 0 STATISTICS = MEAN SIDDEV CORR FPAIR UNIVF BOXM RAW COEFF TABLE /
29 o PLOT = ALL

Thers a“e 12,008,576 bytes of mamary available.

This DISCRIMINANT snalysis requires 2200 bytes of memory.

WILKS' LAMBDA (U-STATISTIC) AND UNIVARIATE F-RAT10

WITH 1 AND 9 DEGREES OF FREEDOM
VARIABLE WILKS' LAMBDA F SIGNIFICANCE
MODULES 0.85167 1.567 0.2421
Loc 0.89442 1.062 0.3296
CMMNTS 0.98567 0.1308 0.7259
LENGTHN 0.93813 0.5935 0.4608
ESTN 0.98823 0.1072 0.7508
IMPLEVEL 0.81586 2.031 0.1878
VOLUME 0.94836 0.4500 0.5016
VOCAB 0.99060 0.8550:-01 8.7767

EXHIBIT F-5
SPSSX - DISCRIMINANT ANALYSIS COMMANDS - SIZE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-Mgy=90 SPSS~-X RELEASE 3.1 FOR VAX/"™MS
Page 29
16:32:31 STUDENT ACCESS NETWORK SPSS-X on UCBEH:: s v35.3

Preceding task required .44 seconds CPU time; .91 seconds elapsed.

30 O DISCRIMINANT GROUPS=GROUPF(1,2)/

31 0 VARIABLES = glogon to TOTCOD /

2 o AMALYSIS = glogon to TCTCOD /

33 0 METBOD = WILXS / PIN = .05 /

34 0 CLASSITY = POQLED /

35 0 STATISTICS = MEAN SIDDEV CORR FPAIR UNIVF BOXM RAW COETFY TABLE /
36 o P1OT = ALL

There are 12,008,560 bytes of memory svailable.

This DISCRIMINANT analysis requires 2688 bytes of memory.

WILXS® LAMBDA (U~STATISTIC) AND UNIVARIATE F-RATIIO

WITH 1 AMD 9 DEGREES OF FREEDOM
VARIABLE WILKS® LAMBDA F SIGNIFICANCE
GLOGOH 0.74897 3.016 0.1164
GCOMEL 0.65827 A.672 0.0589
GLINKS 0.52503 8.142 0.0190
0.51531 8.458 0.0174
GIIME 0.38576 6.365 0.0326
TOTTIME 0.74003 3.162 0.1091
T0TDES 0.78162 2.515 0.1473
TOTCOD 0.78897 2.407 0.1532
EXHIBIT F-6

SPSSX - DISCRIMINANT ANALYSIS COMMANDS - TIME

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX G

SPSSX DISCRIMINANT ANALYSIS CODE AND RELEVANT RESULTS
WITHOUT TEAM 3 FROM THE TREATMENT GROUP (GROUP 2)

ALL VARIABLES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May=90 SPSS-X RELEASE 1.1 FOR VAX/WSS
Page 1
16:32:52 STUDZNT ACCESS NEITWORK SPSS-X om UCHMH:: ws vs.3

VAX STUDENT ACCESS NEITWORK SPSS-X License Number 19638
This software is functional through Jume 30, 1990,

Izry the new SPSS-~X Release 3.0 and 3.1 features:

* Interactive SPSS-X cocmand execution * The new RANK procedure
* Online, ™MS-like Help * Isprovements in:

* Bonlinear Regression * REPORT and TABLIS

* Time Series and Forscasting (TRENDS) * Simplified Syntax

* Macro Facility * Matrix 1/0

See SPSS-X User's Guide, Third Edition, for more informstion on these features.

DATA LIST FILEw*SPR2L.DAT® RECORDS=3
/1 1D 1-2 GROUP 1 REC & CLARITY 6-13 EFFORT 5-22 LOOPS 24-28 SELECTS 30-34
nt 36-40 n2 42-46 CALLS 48-52 DATADIFF 54-58 DIFFICUL 60-65 BLOCKS 67-71
/2 MODULES 12-16 LOC 18-22 CMMNTS 24-28 LENGTHN 30-34 ESTN 36-40
IMPLEVEL 42-46 VOLIME 48-52 VOCAB 54-58
/3 GLOGON 12-16 GCOMPL 18-22 GLINKS 24-28 GRUNS 30-34 GTIME 36-40 TOTTME 42-46
TOTDES 48-52 TOTCOD 54-58

NV LI -
[-X-X-X-N-¥-XN-J

This command will read 3 records from SYSSSTAFF: (FACULTY.GRANGER.STATS)SPRZL.DAT;

Preceding task required .25 seconds CIU time; .32 seconds elapsed.

9 0 DISCRIMIRANT GROUPS=GROUP(1,2)/

10 0 VARIABLES = CLARITY 10 T0ICD /

1o ANALYSIS = CLARITY 70 TOTXXD /

2 0 METHOD = WIIXS / PIN = .05 /

13 0 CLASSIFY = POQLED /

4 0 STATISTICS = MEAN STDDEV CORR FPAIR UNIVE BOXM RAW COEFF TAKLE /
5 0 PLOT = ALL

There are 12,008,608 bytes of memory available.

This DISCRIMINANT analysis requires 21712 bytes of memary.

EXHIBIT G-1

SPSSX - DISCRIMINANT ANALYSIS COMMANDS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GROUP MEANS

GROUP CLARLITY EFFORT
CALLS DATADIFF
1 2078688.57143 6401098.85714
69.14286 10.63429
2 1447880.66667 3799994.00000
36.33333 7.53333
TOTAL 1889446.20000 5620767.40000
59.30000 9.70400
GROUP DIFFICUL BLOCKS
ESTN IMPLEVEL
1 180.47429 311.85714
1567.71429 0.00607
2 129.34000 212.66667
145200000 000833
TOTAL 165.13400 282.10000
1533.00000 0.00675
GROUP VOLUME VOCAB
GTINE TOTTIMNE
1 36553.71429 215.42857
210.85714 204.42857
2 28489.33333 204.66667
170.66667 78.66667
TOTAL 34134.40000 212.20000
198.80000 166.70000
GROUP TOTDES ToTCOD
1 81.71429 122.714629
2 51.66667 27.00000
TOTAL 72.70000 94 .00000

LooPS SELECTS
61.57143 181.85714
67.00000 112.33333
63.20000 161.00000
MODULES Loc
34.00000 1751.00000
26.66667 1436.66667
31.80000 1656.70000
GLOCON GCOMPL
220.28571 3912.71429
167.00000 1528.33333
204.30000 3197.40000
EXHIBIT G-2

N1

34.14286
34.00000
34.10000

CMMNTS

188.14286
224 .66667
199.10000

GLINKS

1057.85714
717.00000
955.60000

GROUP MEANS - ALL VARIABLES

N2

181.28571
170.66667
178.10000

LENGTRN

4655.71429
3669.00000
4359.70000

GRUNS

1023.14286
686.33333
922.10000

WITHOUT TEAM 3 FROM TREATMENT GROUP (GROUP 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WILXS® LAMBDA (U-STATISTIC) AND UNIVARIATIE F-RATIO

WIIR 1 AND 8 DEGREES QF FREEDCM
VARIABLE WILKS® LAMBDA F SIGNITICAKE
CLARITY 0.94012 0.5095 0.4956
EFFORT 0.83331 1.375 0.2746
LOOPS 0.99568 0.3471E-01 0.8568
SELZCTS 0.83881 1.315 0.2846
N1 0.99841 0.1277E-01 0.9128
N2 0.99675 0.2608€-01 0.8757
CALLS 0.85372 1.3N 0.2754
DATADIFF 0.83137 1.63 0.2385
DIFFICUL 0.82093 1.745 0.2230
BLOCKS 0.89822 0.9065 0.3689
MODULES 0.89711 0.9175 0.3662
Loc 0.91083 0.7832 0.4020
CMMNTS 0.98539 0.1186 0.73%
LENGTHN 0.94576 0.4590 0.5172
ESTN 0.99541 0.3686E-01 0.855
IMPLEVEL 0.79592 2.051 0.1900
VOLUME 0.95752 0.3549 0.5678
VOCAS 0.99673 0.2622e-01 0.8754
GLOGON 0.79529 2.059 0.1892
GCOMPL 0.67560 3.861 0.0857
GLINKS 0.62195 4.863 0.0585
GRUNS 0.560946 5.126 0.0534
GTIME 0.68480 3.682 0.0913
TOTTIME 0.78859 2.145 0.1812
TOTDES 0.82804 1.661 0.2334
TOTCOD 0.82940 1.646 0.2355
EXHIBIT G-3

STATISTICS FOR ALL VARIABLES

WITHOUT TEAM 3 FROM TREATMENT GROUP (GROUP 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May=-90 SPSS-X RELEASE 3.1 FOR VAX/WNGS

Page 12
16:32:58 STUDENT ACCESS NETWORK SPSS-X on UCEEN:: s vs.3

Preceding task zequired 3.93 seccads CPU tima; 5.01 sscands elapsed.

16 ¢ DISCRIMIRANT GROUPS=GROUP(1,2)/

17 o VARIABLES = CLARITY T0 blocks,loc /

18 0 AHALYSIS = CLARITY TO blocks,loc /

19 0 METEOD = WIIXS / PIN = .05 /

20 0 CLASSIFY = POCLED /

21 0 STATISTICS = MEAN SINOEV CORR FPAIR UNIVF BQXM RAW COEFF TABLE /
2 0 PLOT = ALL

Thers are 12,008,464 bytes of memory availabls.

This DISCRYMINANT snalysis requires 4638 bytes of ssmory.

WILXS' LAMBDA (U-STATISTIC) AND UNIVARIATE F-RATIO

WITE 1 ARD $ DEGREES OF FREEDOM
VARIABLE WILXS® LAMBDA F SIGHIFICANCE
CLARITT 6.5%312 8.58%3 8.4235
EFFCRY 8.83331 1.375 0.2746
LOQPS 0.99568 0.3471E-01 0.8368
SELECTS 0.85881 1.315 0.2846
N1 0.99841 0.1277E-01 0.9128
"2 0.99675 0.2608E-01 0.8757
CALLS 0.83372 1.371 0.2754
DATADIFY 0.83137 1.623 0.2385
DIFFICUL 0.82093 1.745 0.2230
BLOCXS 0.89822 9.9065 0.3689
e 0.91083 0.7832 0.4020
EXHIBIT G-4

SPSSX - DISCRIMINANT ANALYSIS COMMANDS - COMPLEXITY
WITHOUT TEAM 3 FROM TREATMENT GROUP (GROUP 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May=90 SPSS-X RELFASE 3.1 FOR VAX/WS
Page 17
16:32:59 STUDENT ACCESS NETWCRK SPSS-X on UCBEEH:: ™S vs.3

Preceding task required .53 seconds CPU time; 1.26 seconds elapsed.

23 0 DISCRIMINANT GROUPS=GROUP(1,2)/

28 0 VARIABLES = modules to vocsb /

25 0 ANALYSIS = modules IO vocab /

26 0 METHOD = WIIXS / PIN = .05 /

27 o CLASSITY = FOOLED /

28 0 STATISTICS = MEAN STDDEV CORR FPAIR UNIVF MXXM RAW COEFF TABLE /
29 0 FLOT = ALL

There are 12,008,576 bytes of mamory available.

This DISCRIMINANT analysis requires 2200 bytes of memory.

yILYSt LAMRDA (U~STATISTIC) AND UNIVARIATE F-RATIO

WITH 1 AND 8 DEGREES OF FREEDOM
VARIABLE WILKS' LAMBDA F SIGNIFICANCE
MODULES 0.89711 0.9175 0.3662
Loc 0.91083 0.7832 0.4020
CMMNTS 0.98539 0.1186 0.73%
LENGTHN 0.94574 0.4590 0.5172
ESTN 0.99541 0.2£86E-01 0.8525
IMPLEVEL 0.79592 .051 0.1900
VOLUME 0.95752 0.3549 0.5678
VOCAB 0.99673 0.26226-01 0.8754

EXHIBIT G-5
SPSSX - DISCRIMINANT ANALYSIS COMMANDS - SIZE

WITHOUT TEAM 3 FROM TREATMENT GROUP (GROUP 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-t4xy=-90

16:33:00

SPSS~X RELEASE 3.1 FOR VAX/WS

Page 21

STUDENT ACCESS NETWORK SPSS-X on UCBEN:: ws vs.3

Preceding task required .45 seconds CPU time; .88 seconxis elapsed.

30
31
32
33
3
35
36

o00coOoo0O0

DISCRIMINANT GROUPS~GROUP(1.2)/
VARIABLES ~ glogon to TOTCOD /
ANALYSIS = glogon to TOTCOD /
METHQD = WILXS /
CLASSIFY = POOLED /

PN = .05 /

STATISTICS = MEAN STDDEV CORR FPAIR UNIVF BOXM RAW CUEFF TARLE /

PLOT = ALL

Thers are 12,008,560 bytes of memory available.

This DISCRIMINANT analysis requirss 2688 bytes of memory.

WILXS' LAMBDA (U-STATISTIC) AND URIVARIATE F~RATIO

WITE 1 ARD 8 DEGREES OF FREEDCHM
VARIABLE WILKS' LAMBOA F SIGNIFICANCE
GLOGOR 0.79529 2.0%9 0.1892
GCoPL 0.67560 3.841 0.0857
GLINES 0.62195 +.863 0.0ses
] 0.60946 5.126 0.0534
GTDE 0.68480 3.682 0.0913
TOTTRE 0.788%9 2.145 0.1812
TOTES 0.82804 1.661 0.2334
TOTC00 0.82940 1.646 0.2355

EXHIBIT G-6

SPSSX - DISCRIMINANT ANALYSIS COMMANDS - TIME

WITHOUT TEAM 3 FROM TREATMENT GROUP (GROUP 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX H

SPSSX DISCRIMINANT ANALYSIS CODE AND RELEVANT RESULTS
ALL TEAMS FOR BOTH GROUPS
ALL VARIABLES
TRANSFORMED TO Z SCORES
COMBINED TO COMPUTE P VALUES FOR COMPLEXITY,
SIZE AND TIME

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May=90 SPSS-X RELEASE 3.1 FOR VAX/WMS
Page 1
17:04:54 STUDENT ACCESS HETWCRK SPSS-X on UCHEB:: WS V5.3

VAX STUDENT ACCESS NETWOEK SPSS-X License Fumber 19638
This scftware is functicnal through June 30, 1990.

Try the new SPSS-X Relsase 3.0 and 3.1 features:

* Interactive SPSS-X command execution
* Online,MS~like Help

* Nonlinear Regression

* Time Series and Forecasting (TRENDS)
* Macro Facility

The new RARK procedure

Ioxprovements in:
REPCRY and TARLES
Simplified Syntex
Matrix I/0

* ¢ s 8

See SPSS~X User’'s Guide, Third Edition, for more infomstion on these fsatures.

0 DATA LIST FILE=‘ALLDATA.DAT® RECORDS=3

/% ID 1~2 GROUP 1 REC 4 CLARITY 6-13 EFFORT 15-22 LOQPS 24~28 SELICIS 30-34
nl 36-40 n2 42-46 CALLS 48-52 DATADIFF 54-58 DIFFICIL 60-65 BLOCKS 67-71

/2 MODULES 12-16 LOC 18~22 QMEITS 24-28 LENGTEN 30-34 ESTN 36-40
IMPLEVEL 42-46 VOLIME 48~52 VOCAB 54-58

/3 GLOGON 12-16 GCOMPL 18-22 GLINKS 24-28 GRUES 30-34 GIIME 36-40 TOITIME 42-46
TOIDES 48-52 TOICID 54-58

o000 000CO

comaand will resd 3 records from SYSSSTAFF:{FACULTY.GRABGER.STATS]ALLDATA.DAT;

DESCRTPTIVES VARIABLESe CLARTTY EFFORT LOOPS SELECTS nl n2 CALLS
DATADITF DIFFICUL ELOCKS MODULES LOC CMNTS LENGTEN IESTN
IMPLEVEL VOLIME VOCAB GLOGON GCOMPL GLINKS crne
TOTIIME TOTDES T0TCD /

SAVE /
STATISTICS = ALL

SeLvEkES g P R T e

0o ocovo0oo

There are 12,007,712 bytes of memory available.

1,976 bytes of mamory required for the DESCRIPTIVES procedurs.
52 bytes have alrssdy been acquired.
1,924 bytes resain to be acquired.

EXHIBIT H-1

SPSSX - DISCRIMINANT ANALYSIS COMMANDS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May-90 SPSS-X RELEASE 3.1 FOR VAX/WS
Page 10
17:04:57 STUDENT ACCESS NRETWORK SPSS-X om UCHBEH:: ws V5.3

The following Z-Score variables have been saved on your active file:

From To Weighted
Vazriable Z-Score Label Valid X

CLARITY ZCLARITY Zscors(CLARITY)
IFTORT ZEZFFORT Zscore (EFFORY)
LOOPS 2L00Ps Zscore(LOQPS)
SELICIS ZSELECTS Zscore(SELICTS)

;5§ 4. 48 Zscore(N1)
N2 ax2 Zacore(N2)
CALLS ZCALLS Zscore(CALLS)

DATADIFF ZDATADIF Zscors(DATADIFT)
DIFFICUL ZDIFFICU Zscore(DIFFICUL)
BLOCKS ZBLOCKS Zacore (BLCCXS)
MODULES 2L0ULES Zscore(MODULES)
Loc aoc Zscoze(1LOC)
QIS OMNTS Zscore(QENTIS)
LENGTHN ZLENGTEN Zscore(LENGTHN)
=N ZESTX Zscore(ISTN)
IMPLEVEL ZIMPLEVE Zscore(IMPLEVEL)
VOLIRE ZVaLeE Zscors (VALIME)
VOCAB ZVOCAB Zscors(VOCAB)
GLOGON ZGLOGON Zacore(GLOGON)
GCOMPL ZGCOTL Zscore(GCOMEL)
GLINKS ZGLINKS Zscore(GLINKS)
ZGRURS Zscore(GRUNS)
GIDE LINE Zacors(GIDE)
T0TIDME ZIOTIDE Zscore(TOTTIME)
TOIDES ZT0TIDES Zscore(TOTDES)
Io7C00 ZIo7cas Zscore(TOTCOD)

EEREERREREREEREEEEEEEERRBEER

EXHIBIT H-2
Z SCORES FOR ALL VARIABLES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-¥ay=90 SPSS-X RELEASE 3.1 FOR VAX/WsS
Page 11
17:04:57 STUDEXT ACCESS NETWORK SPSS-X on UCBER:: WS V5.3

0
0
0 ZIOTIDME ZIUINES ZIOICOD /
0

E BEBGE

are 12,009,568 bytss of mamory svailabls.

of semory required for the LIST procedurs.
have alrsady been scquired.
camain to be acguired.
VARTABLYS ARE LISTED IN IEE FOLLOWING CRDER:

th

d

1: GROUP ZCLARITY ZEFFORT ZLOCPS ISELICIS 21 ZH2 ZTALLS ZDATADIT 2DIFFICU ZELOCXS
2: 2400ULES ZLOC 20T ZLENGTEN ZESTIN ZIMPLEVE ZVOLIME ZVOCAE ZGLOGON ZGCOMEL

HEE

3: ZGLINKS ZGRUNS ZGITME ZIOTTIME ZIOIDES ZYOICOD

COMPUTE ZCOMPL = ZEFFORT + ZLOOPS + ZSELICIS + 2X1 + 2H2 +
ZOALLS + ZBLOCXKS + zclarity + zloc + zdatadif + 3difficu

COMPUTE 2SIZE = 20DULES + ZLOC + ZINGIEN + ZWOLIRME + ZWCAR + zomsmts —+
zastn + mimpleve

COMPUT ZIDE = 2GRINS + ZGTRE + ZI0TINY + ZIOIDES + ZIUICD + zglogem +~
zgcompl + zglinks

DISCRIMINANT GROUPS~GROUP (1.2) /

METOD = WILXES / ?IN = .05 /

CLASSITY = POOLYD/

STATISTICS = MEAN STDOEV CORR FPAIR UNIVE BCXM RAW COEEF TAELE/
NOoT = ALL /

phgrespuRney

ODO0O0OOCO0OO0OO00ODODODODOODOO

There ate 12,007,072 bytes of nemary available.

This DISCRIMINANY analyzis requires 1692 bytes of wemory.

EXHIBIT H-3
RELEVANT SPSSX COMMANDS
COMBINE Z SCORES FOR EACH CATEGORY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WIIXS® LAMBDA (U-SIATISTIC) AND UMIVARIATE F-RAIIO
WIIE 1 ARD 9 DEGREES OF FRIEEZDCM

VARIABLE WILKS' LAMEDA F SIGNITICARCE

zcoMeL 0.83230 1.813 0.210

zZIne 0.39809 13.61 0.0030

’SIZ) 0.97657 0.2189 0.6532
EXHIBIT H-4

SIGNIFICANCE VALUES FOR EACH CATEGORY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX I

SPSSX - RELIABILITY - ALPHA MODEL
GROUP 1 ~ CONTROL GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May=90 SPSS-X RELEASE 3.1 FOR VAX/WiS
Page 1
17:30:09 STUDENT ACCESS NETWORK SPSS-X on UCHENH:: ws V5.3

VAX STUDENT ACCESS RETWORK SPSS-X License Humber 19638
This software is functional through June 30, 1990.

Iry the new SPSS-X Relsase 3.0 and 3.1 features:

= Interactive SPSS-X command execution hd
* Online, ™S-like Help hd
* Honlinear Regression + REPCRT and TABLES
* Time Series and Forecasting (TREMDS) b
* Macro Facility -

See SPSS-X User‘'s Guide, Third Edition, for more information on these features.

DATA LIST FILE='ALLDATA.DAT* RECGRDS~3
/1 1D 1-2 GROUP 1 REC 4 CLARITY 6-13 EFFORT 15-22 LOOPS 24-28 SELECTS 30-34
nt 36-40 n2 42-46 CALLS 48-52 DATADIFF 54-58 DIFFICUL 60-65 BLOCKS 67-71
/2 NODULES 12-16 LOC 18-22 CMMNTS 24-28 LENGTHN 30-34 ESTN 36-40
IMPLEVEL 42-46 VOLUME 48-52 VOCAB 54-58
/3 GLOGON 12-16 GCOMPL 18-22 GLINKS 24-28 GRUNS 30-34 GTIME 36-40 TOTTIME 42-46
TOTDES 48-52 TOTCOD 54-58

~Nownauin
-Y-¥-X-N-N-3-]

This comoand will read 3 records from SYSSSTAFT: [FACULIY.GRANGER.STATS]ALLDATA.DAT;

9 0 SELECT IF (GRGUP EQ 1)

10 O DESCRIPTIVES VARIABLES= CLARITY EFFORT LOOPS SELECTS ni n2 CALLS
1 0 DATADIFF DIFFICUL BLOCKS MODULES LOC CMMNTS LENGTHN ESTN

12 0 IMPLEVEL VOLUME VOCAB GLOGON GCOMPL GLINKS GRUNS GTIME

13 0 TOTTME TOTDES TOTCOO /

% 0 SAVE /

15 0 STATISTICS = ALL

EXHIBIT I-1
SPSSX - DISCRIMINANT ANALYSIS COMMANDS
SELECTING GROUP 1 (CONTROL GROUP)

RELIABILITY ANALYSIS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-Mgy=-90 SPSS~-X RELEASE 3.1 FOR VAX/OSS
Page 10
17:30:12 STUDEKRT ACCESS HETWORK SPSS~-X on UCBEE:: s v3.3

The following 2-Score variables have been ssved on your active file:

From To Weighted
variable 2-Score Label valid N

CLARITY Z2CLARITY Zscore(CLARITY)
EFFORT ZEFFORT Zscore(EFFORT)

LOOPS 2L00PS 2score(LOOPS)
SELECTS 2SELECTS Zscore(SELECTS)
Nt N1 Zscore(N1)

N2 2582 Zscore(N2)
CALLS 2CALLS 2score(CALLS)

DATADIFF ZDATADIF Zscore(DATADIFF)
DIFFICUL 2DIFFICU Zscore(DIFFICUL)
BLOCKS ZBLOCKS 2score(BLOCKS)
MODULES ZMODULES Zscore(MODULES)
Loc 2L0C 2score(LOC)
CMMNTS ZCMMNTS Zscore(CMNNTS)
LENGTHN ZLENGTHN Zscore(LENGTHR)
ESTN ZESTN Zscore(ESTN)
IMPLEVEL ZIMPLEVE Zscore(INPLEVEL)
VOLUME ZVOLUME Zscore(VOLUMNE)
VOCAB ZVOCAB Zscore(VOCAB)
GLOGON ZGLOGON 2score(GLOGON)
GCOMPL ZGCOMPL Zscore(GCOMPL)
GLINKS 2GLINKS Zscore(GLINKS)
GRUNS ZGRUNS 23core(GRUNS)
GTINE ZGTIME Zscore(GTIME)
TOTTME ZTOTTME 2score(TOTTME)
TOTDES ZTOTDES Zscore(TOTDES)
TOTCOD 2T0TCOD 2score(TOTCOD)

NNSNNNNNNNNNNNNNNNNNNNNNNN

EXHIBIT I-2
Z SCORES FOR ALL VARIABLES

CONTROL GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May~90 SPSS-X RELFASE 3.1 FOR VAX/WS

Page 11
17:30:12 STUDERT ACCISS HETWORK SPSS-X on UCBEB:: WE V5.3

Preceding task required .57 seconds CPU time; 1.07 seconds elapsed.

16 0 LIsT
17 ¢

There are 12,009,568 bytes of memory available.

Preceding task required .18 seconds CPU time; .19 seconds elapsed.

18 0 RELIABILITY VARIABLES= ZCLARITY ZEFFORT ZLOOPS ZSELECTS Zn1 2n2 Z2CALLS
19 0 ZDATADIFF ZDIFFICUL 2BLOCKS ZMODULES 2ZLOC ZOMMNTS ZLENGTHN 2ESTN
20 0 ZIMPLEVEL ZVOLUME 2ZVOCAB 2GLOGON ZGCOMPL ZGLINKS 2GRUNS 2ZGTIME
21 O ZTOTTME ZTOTDES ZTOTCOO /
2 0
23 0 SCALEC(COMPLEX) = ZCLARITY 2EFFORT ZLOOPS ZSELECTS 2n1 2Zn2 2CALLS
2 0 ZDATADIFF ZDIFFICUL ZBLOCKS /
S0
26 0 SCALE(SIZE)= ZMODULES 2LOC 2CMMNTS ZLENGTHN 2ESTN
gg 0 ZIMNPLEVEL ZVOLUME 2VOCAB /
0
29 0 SCALE(TIME) = ZGLOGON 2GCOMPL 2GLINKS 2GRUNS 2GTIME
3 0 ZTIOTTME ZTOTDES ZTOTCOD /
N0
32 0 MODEL=ALPHA /
330 SUMMARY = CORE TOTAL
3% 0

EXHIBIT I-3
SPSSX -~ RELIABILITY COMMANDS
COMBINING VARIABLES INTO CATEGORIES

CONTROL GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May=90 SPSS-X RELEFASE 3.1 FOR VAX/WMS
Page 23
17:30:15 STUDENT ACCYSS HETWCERK SPSS-X on UCBEH:: ws V5.3

RELIABILITY AKNALYSIS - SCALE (COMPLEX)

1. ZCLARITY Zscore(CLARITY)

2. ZEFFORT Zscoxre(ZFFORT)

3 ZLOGPS Zscore(LOOPS)

& ISELICTS Zscore(SELECTS)

1 a1 Zscore(Nl)

6. 02 Zscoxe(N2)

7. ZCALLS Zscore(CALLS)

8 ZDATADIF Zscore(DATADIFT)

9. ZDIFFICY Zscore(DIFFICUL)
10. ZBLOCXS Zscore(BLOCXS)

SCALE SCALE CORRECTED
MEAN VARIANCE M- SQUARED ALPHA
Ir IT™m IF ITRM TOTAL MULTIPLE IF ITEM
DELITED DELEYED CORRELATION CORRELATION DELETED
ZCLARTTY .0000 34,8304 .9301 - L8343
ZEFFORT .0000 34.2710 9854 . .8296
ZLoo®es .0000 3%9.4717 3043 . .8685
ZSELXCTS .0000 3A.7797 .9351 . .8339
0 .0000 39.546) .4979 . . 8690
oz .0000 36.6111 .7600 . . 8484
ZCALLS .0000 36.9617 .7276 . .8311
ZDATADIF .0000 47.2042 -.1016 . .9103
ZDI¥FICU .0000 46.1836 ~.027¢ . .9038
ZBLOCXS .0000 34,6009 .9519 . .8324

RELIABILITY AHALYSIS - SCALE (COMPLEX)
RELIABILITY COEFFICIENTS 10 IT]MS
ALFHA = 8737 STAMDARDIZED ITEM ALPHA = 8737

EXHIBIT I-4
ALPHA LEVELS FOR COMPLEXITY VARIABLES
CONTROL GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19~May=90 SPSS-X RELEASE 3.1 FOR VAX/™MS
Page 25
17:30:15 STUDENT ACCESS NETWORK SPSS-X on UCBEH:: ws v5.3
RELIABILITY ANALYSIS - SCALE (SIZE)

1. 200ULES Zscore(MODULES)

2. ZLoC Zscore(LOC)

3. OMNTS Zscors(Q1IS)
4. ZLENGTHN Zacare(LENGTEN)
S. ZESIN Zscoxe(ESTH)

6. ZIMPLEVE Zscors (IMPLEVEL)
7. ZVOLIME Zscare (VOLIME)
8. ZVOCAB Zacore(VOCAB)

SCALE SCALE CORRECIED
MEAN VARTANCE IR SQUARED ALPHA
IFr ITM Ir ™™ TOTAL MILIITLE IF ITEM
DELEZTED DELETID CORRELATTOR CORRELATTION DELETED
250ULES .0000 23.6616 1444 . .8213
pade o .0000 20.0063 .5656 . .7585
ZQ2TS .0000 26.1398 -.1050 . .8342
ZLYNGTEN .0000 17.6010 .8897 . .7027
ZESTH .0odo 17.2309 L9438 . .6927
ZIMPLEVE .gooc 23.0265 .0040 . .8403
ZVOLIME .0000 17.4529 - 9112 . .6987
ZVOCAB .0000 17.2183 . 9368 . .6940

RELIABILITY COEETICIENTS 8 IIEMS
ALPHA = .7921 STARDARDIZED ITEM ALTHA = .7521

EXHIBIT I-5
ALPHA LEVELS FOR SIZE VARIABLES

CONTROL GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May=90 SPSS-X RELEASE 3.1 FOR VAX/WS

Page 26
17:30:15 STUDENT ACCESS NETWORK SPSS-X on UCBER:: WS V5.3
RELIABILITY ANALYSIS - SCALE (TIMNE)
1. 2GLOGON 2score(GLOGON)
2. 2GCOMPL Zscore(GCOMPL)
3. 2GLI¥KS 2score(GLINKS)
4. ZGRUNS 2score(GRUNS)
S. 2GTIME 2score(GTIME)
6. ZTOTTME 2score(TOTTME)
7. ZTOTDES 2score(TOTDES)
8. ZTOoTCoD 2score(TOTCOD)
. ATISTICS
TTEN-TOTAL ST ;CALE SCALE CORRECTED
WEAK VARTALTS iTEW- SQUARED ALPHA
IF ITEM IF ITEM TOTAL MULTIPLE IF 1TEM
DELETED DELETED CORRELATION CORRELATION DELETED
ZGLOGON .0000 21.7978 - 1371 . .7920
Z2GCOMPL .0000 21.0941 -.0827 . JT795
ZGLINKS .0000 14.9072 . 1266 . .6188
ZGRUNS .0000 14.8701 7383 . 6175
2GTIME .0000 14.9756 .7161 . .6213
ZTOTTHE .0000 14.9327 7226 . .6198
ZTOTDES .0009 19.8333 .0768 B L7549
270TCOD .0000 16.6959 1593 . 6110

RELIABILITY COEFFICIENTS 8 ITENS
ALPHA = 7180 SYANDARDIZED ITEM ALPHA = .7180

EXHIBIT I-6
ALPHA LEVELS FOR TIME VARIABLES

CONTROL GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX J

SPSSX - RELIABILITY - ALPHA MODEL

GROUP 2 - TREATMENT GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May-90 SPSS-X RELEASE 3.1 FOR VAX/WMS
Page 1
17:30:54 STUDENT ACCESS NETWORK SPSS-X on UCBEH:: WS V5.3

VAX STUDENT ACCESS NETWOEK SPSS-X License Bumber 19638
This software is functional through June 30, 1990.

Try tbs new SPSS~X Reiease 3.0 and 3.1 features:

Interasctive SPSS~X command executicn »
Online,WS-like Help hd
Honlinear Regressicn * REPORT and TABLES
Time Series and Forecasting (TRENDS) -
Maczo Facilivty b

[I B N]

See SPSS-X User‘s Guide, Third Edition, for more informstion on these features.

1 0 OATA LIST FILE='SPR2L.DAT® RECORDS=3

2 0 /11D 1-2 GROUP 1 REC 4 CLARITY 6-13 EFFORT 15-22 LOOPS 24-28 SELECTS 30-34
30 nl 3640 n2 42-46 CALLS 48-52 DATADIFF 54-58 DIFFICUL 60-65 BLOCKS 67-71
4 0 /2 MODULES 12-16 LOC 18-22 CMMNTS 24-28 LENGTHN 30-34 ESTW 36-40

50 IMPLEVEL 42-46 VULUME 48-52 VOCAB 54-58

6 0 /3 GLOGON 12-16 GCOMPL 18-22 GLINKS 24-28 GRUNS 30-34 GTIME 36-40 TOTTME 42-46
70 TOTDES 48-52 TOTCOD 54-58

8 0 LIST

9 0 SELECT IF (GROUP EQ 2)

10 O OESCRIPTIVES VARIABLES= CLARITY EFFORT LOOPS SELECTS nt n2 CALLS

1M1 0 DATADIFF DIFFICUL BLOCKS MODULES LOC CMMNTS LENGTHN ESTN

12 ¢ IMPLEVEL VOLUME VOCAB GLOGON GCOMPL GLINKS GRUNS GTIME

30 TOTTME TOTDES TOTCOO /

% 0 SAVE /

150 STATISTICS = ALL

EXHIBIT J-1
SPSSX - DISCRIMINANT ANALYSIS COMMANDS
SELECTING GROUP 2 (TREATMENT GROUP)
RELIABILITY ANALYSIS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May~90 SPSS-X RELEASE 3.1 FOR VAX/WS
Page 10
17:30:56 STUDENT ACCESS NETWCORK SPSS-X on UCBEE:: WS V5.3

The following Z~Score variables have been saved on your active filae:

Weighted
From To Valid ¥
variable 2-Score Label

enccoces cnseses eeasmae

CLARITY ZCLARITY 2score(CLARITY)
EFFORT ZEFFORT 2score(EFFORT)

LOGPS ZL00PS 2score(LOOPS)
SELECTS ZSELECTS Zscore(SELECTS)
N1 N1 2score(N1)

N2 ZR2 2score(N2)
CALLS ZCALLS 2score(CALLS)

DATADIFF ZDATADIF Zscore(DATADIFF)
DIFFICUL 2DIFFICU 2score(DIFFICUL)
BLOCKS 28LOCKS 2score(BLOCKS)
MODULES ZMODULES Zscore(MODULES)
Loc ZLoc 2score(LOC)
CMMNTS ZCMMNTS 2score(OMNTS)
LENGTHN ZLENGTHN 2score(LENGTHN)
ESTN 2ESTN 2score(ESTN)
IMPLEVEL ZIMPLEVE Zscore(IMPLEVEL)
VOLUME ZVOLUME 2score(VOLUME)
VOCAB ZVOCAB Z2score(VOCAB)
GLOGON 2GLOGON 2score(GLOSCN)
GCOMPL ZGCOMPL 2score(GCOMPL)
GLINKS ZGLINKS Zscore(GLINKS)
GRUNS ZGRUNS Zscore(GRUNS)
GTIME ZGTIME Zscore(GTIME)
TOTTME ZTOTTME 23core(TOTTME)
TOTDES ZTOTDES Zscore(TOTDES)
TOTCO0 270TCOD 2score(TOTCOD)

PN I Y R R N B R R R R _BR R B B B R R R R A

EXHIBIT J-2
Z SCORES FOR ALL VARIABLES

TREATMENT GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19~May=-90 SPSS~X RELEASE 3.1 FOR VAX/WS

Page 11 ..
17:30:56 STUDENT ACCESS MEITWORK SPSS-X on UCBEH:: ws v5.3
16 0 LIST
17 0
18 0 RELIABILITY VARIABLES= ZCLARITY 2EFFGRT ZLOOPS 2SELECTS Zni Zn2 2CALLS
9 0 ZDATADIFF ZDIFFICUL ZBLOCKS ZMODULES 2LOC ZCMMNTS 2LENGTHN 2ESTN
20 0 ZIMPLEVEL ZVOLUME ZVOCAB 2GLOGON ZGCOMPL ZGLINKS 2GRUNS 2GTIME
21 ¢ ZTOTTME ZTOTDES ZTOTCOD /
2 0
23 0 SCALE{COHPLEX) = ZCLARITY ZEFFORT 2L00PS ZSELECTS 2n1 22 Z2CALLS
26 0 ZDATADIFF ZDIFFICUL 2BLOCKS /
S5 0 .
26 0 SCALE(SIZE)= ZMODULES 2LOC 2CMMNTS ZLENGTHN ZESTN
27 0 ZIMPLEVEL ZVOLUME 2ZVOCAB /
28 0
29 0 SCALECTIME) = 2GLOGON ZGCOMPL ZGLINKS ZGRUNS 2GTIME
3 0 ZTOTTME ZTOTDES ZTOYCOD /
3t ©
32 0 MODEL=ALPHA /
30 SUMMARY = CORE TOTAL
3% 0

EXHIBIT J=-3
SPSSX - RELIABILITY COMMANDS
COMBINING VARIABLES INTO CATEGORIES

TREATMENT GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May=-90 SPSS-X RELEASE 3.1 FOR VAX/WMS

Page 12

17:30:57 STUDENT ACCESS HETWORK SPSS-X on UCBER::

:

BepNmuruny
BE)

[y
it

E

ITEM-TOTAL STATISTICS

SCALE
MEAN
IF IT=M
DELETED
ZCLARITY .0000
ZESTGRT .0000
ZLOOPS .0000
ZSELECTS .geen
n1 .0030
2 .0000
ZCALLS .0000
ZDATADIT .0000
ZDIFFICU .0000
ZBLOCKS .0000

REZLIABILITY AHNHALYSIS

Zscozre (CLARITY)

Zscore(XFTORT)
Zscore (LOOPS)

Zscore (SELECTS)

Zscore(XNl)
Zscors(d2)
Zscore(CALLS)

Zscore(DATADIIT)
Zacore(DIFFICUL)

Zscore(BLOCKS)

SCALE
VARTANCY
IF ITEM
DELETED

42.3944
A2.1246
44,9192
42,0346
45.5014
45.2087
51.2265
51.72163
49.4713
42,8755

CURRECTED
I™¢ = Snmanwn

TOTAL = MOLIIPLE
CORRELATION CORRELATION

.9706
.9945
.7546

.7066
.7306 .
.2660 .
.2307
.3954
.9284

RELIABILITY ANALYSIS

RELIABILITY COEFFICIENTS 10 ITOSS
STANDARDIZED ITEM ALPHA = .9128

ALPEA = .9128

EXHIBIT J-4

™S V5.3

SCALE

SCALE

(COMPLEX)

(COMPLEX)

ALPHA LEVELS FOR COMPLEXITY VARIABLES

TREATMENT GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May-90 SPSS-X RELEASE 3.1 FOR VAX/WMS

Page 25

17:30:59 STUDENT ACCESS NEIWORK SPSS-X on UCBEH::

O NN

;
:
1y

i

.0000
.0000
.0000
L0000
.0000
.q000
.0000
.0000

L

RELIABILITY ANALYSIS

Zscore(MODULES)
Zscors(LOC)
Zscore(Q2HIIS)
Zscore(LENGIHN)
Zscore(ESTN)
2Zscore(IMPFLEVEL)
Zacore(VOLIME)
Zscore (VOCAB)

SCALE
VARIANCY
IFr IIM
DELETED

32.9313
.32.8033
32.8345
33.8963
32.5624
46.5069
33.5072
32.5600 -

RELIABILITY COEFFICIENTS 8 Ias

ALPHA = .9394

CORRECTED

ITR+ = SQUARED
I0TAL MOLIIFLE
CORRELATION CORRELATION

.9387
L9715
.9685
.8629
.9964
-.1886
.9006
.9966

STANDARDIZED ITEM ALPHA = 9394

EXHIBIT J-5

ws V5.3

SCALE (SIZE)

ALPHA LEVELS FOR SIZE VARIABLES

TREATMENT GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19-May-90 SPSS-X RELEASE 3.1 FOR VAX/WMS

Page 26
17:30:59 STUDENT ACCESS NETWORK SPSS~X on UCBEH:: WS V5.3
RELIABILITY ANALYSIS =~ SCALE (TIME)
1. 2GLOGON 2score(GLOGON)
2. 2GCOMPL 2score(GCOMPL)
3. ZGLINKS 2score(GLINKS)
4. 2GRUNS 2score(GRUNS)
5. 2GTINE 2score(GTIME)
6. ZTOTTHE Zscore(TOTTME)
7. ZTOTDES 2score(TOTDES)
8. ZTOoTCOD 2score(TOTCOD)

SCALE SCALE CORRECTED
MEAN VARIANCE ITEM- SQUARED ALPHA
IF ITRM IF I TOTAL MOLIIZIZ T ITM
DELETED DELETED CORRELATION CORRELATION DELETED
2GLOGON .0000 27.6293 ~.5984 . .8711
2GCOMPL .0000 24.6702 =-.3354 . .8356
ZGLINKS .0000 15.7538 .7036 . . 6483
ZGRUNS .0000 15.6943 7124 . 6463
2GTIME .0000 13.9657 .9865 . .5819
ZTOTTME .0000 14,7427 .8590 . .6127
ZTOTDES .0000 15.357% .7631 . .6349
ZT0TC0D .0000 14.2194 .9440 . .5923

RELIABILITY COEFFICIENTS 8 ITEMs
ALPHA = .7336 STANDARDIZED ITEIM ALPHA = ,7336

EXHIBIT J-6
ALPHA LEVELS FOR TIME VARIABLES

TREATMENT GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

